This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter base contains subsets of its pairwise intersections. (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Jeff Hankins, 1-Dec-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbasssin | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝑋 ∈ dom fBas ) | |
| 2 | isfbas2 | ⊢ ( 𝑋 ∈ dom fBas → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝐹 ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝐹 ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ) ) ) |
| 4 | 3 | ibi | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝐹 ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ) ) |
| 5 | 4 | simprd | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝐹 ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ) |
| 6 | 5 | simp3d | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝐹 ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) |
| 7 | ineq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∩ 𝑧 ) = ( 𝐴 ∩ 𝑧 ) ) | |
| 8 | 7 | sseq2d | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ↔ 𝑥 ⊆ ( 𝐴 ∩ 𝑧 ) ) ) |
| 9 | 8 | rexbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝑧 ) ) ) |
| 10 | ineq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝐴 ∩ 𝑧 ) = ( 𝐴 ∩ 𝐵 ) ) | |
| 11 | 10 | sseq2d | ⊢ ( 𝑧 = 𝐵 → ( 𝑥 ⊆ ( 𝐴 ∩ 𝑧 ) ↔ 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) ) |
| 12 | 11 | rexbidv | ⊢ ( 𝑧 = 𝐵 → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) ) |
| 13 | 9 12 | rspc2v | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ( ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝐹 ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) ) |
| 14 | 6 13 | syl5com | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) ) |
| 15 | 14 | 3impib | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹 ) → ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ ( 𝐴 ∩ 𝐵 ) ) |