This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a filter on a domain, produce a filter on the range. (Contributed by Jeff Hankins, 7-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fbasrn.c | |- C = ran ( x e. B |-> ( F " x ) ) |
|
| Assertion | fbasrn | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> C e. ( fBas ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fbasrn.c | |- C = ran ( x e. B |-> ( F " x ) ) |
|
| 2 | simpl3 | |- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x e. B ) -> Y e. V ) |
|
| 3 | simpl2 | |- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x e. B ) -> F : X --> Y ) |
|
| 4 | fimass | |- ( F : X --> Y -> ( F " x ) C_ Y ) |
|
| 5 | 3 4 | syl | |- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x e. B ) -> ( F " x ) C_ Y ) |
| 6 | 2 5 | sselpwd | |- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x e. B ) -> ( F " x ) e. ~P Y ) |
| 7 | 6 | fmpttd | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x e. B |-> ( F " x ) ) : B --> ~P Y ) |
| 8 | 7 | frnd | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ran ( x e. B |-> ( F " x ) ) C_ ~P Y ) |
| 9 | 1 8 | eqsstrid | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> C C_ ~P Y ) |
| 10 | 1 | a1i | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> C = ran ( x e. B |-> ( F " x ) ) ) |
| 11 | ffun | |- ( F : X --> Y -> Fun F ) |
|
| 12 | 11 | 3ad2ant2 | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> Fun F ) |
| 13 | funimaexg | |- ( ( Fun F /\ x e. B ) -> ( F " x ) e. _V ) |
|
| 14 | 13 | ralrimiva | |- ( Fun F -> A. x e. B ( F " x ) e. _V ) |
| 15 | dmmptg | |- ( A. x e. B ( F " x ) e. _V -> dom ( x e. B |-> ( F " x ) ) = B ) |
|
| 16 | 12 14 15 | 3syl | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> dom ( x e. B |-> ( F " x ) ) = B ) |
| 17 | fbasne0 | |- ( B e. ( fBas ` X ) -> B =/= (/) ) |
|
| 18 | 17 | 3ad2ant1 | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> B =/= (/) ) |
| 19 | 16 18 | eqnetrd | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> dom ( x e. B |-> ( F " x ) ) =/= (/) ) |
| 20 | dm0rn0 | |- ( dom ( x e. B |-> ( F " x ) ) = (/) <-> ran ( x e. B |-> ( F " x ) ) = (/) ) |
|
| 21 | 20 | necon3bii | |- ( dom ( x e. B |-> ( F " x ) ) =/= (/) <-> ran ( x e. B |-> ( F " x ) ) =/= (/) ) |
| 22 | 19 21 | sylib | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ran ( x e. B |-> ( F " x ) ) =/= (/) ) |
| 23 | 10 22 | eqnetrd | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> C =/= (/) ) |
| 24 | fbelss | |- ( ( B e. ( fBas ` X ) /\ x e. B ) -> x C_ X ) |
|
| 25 | 24 | ex | |- ( B e. ( fBas ` X ) -> ( x e. B -> x C_ X ) ) |
| 26 | 25 | 3ad2ant1 | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x e. B -> x C_ X ) ) |
| 27 | 0nelfb | |- ( B e. ( fBas ` X ) -> -. (/) e. B ) |
|
| 28 | eleq1 | |- ( x = (/) -> ( x e. B <-> (/) e. B ) ) |
|
| 29 | 28 | notbid | |- ( x = (/) -> ( -. x e. B <-> -. (/) e. B ) ) |
| 30 | 27 29 | syl5ibrcom | |- ( B e. ( fBas ` X ) -> ( x = (/) -> -. x e. B ) ) |
| 31 | 30 | con2d | |- ( B e. ( fBas ` X ) -> ( x e. B -> -. x = (/) ) ) |
| 32 | 31 | 3ad2ant1 | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x e. B -> -. x = (/) ) ) |
| 33 | 26 32 | jcad | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x e. B -> ( x C_ X /\ -. x = (/) ) ) ) |
| 34 | fdm | |- ( F : X --> Y -> dom F = X ) |
|
| 35 | 34 | 3ad2ant2 | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> dom F = X ) |
| 36 | 35 | sseq2d | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x C_ dom F <-> x C_ X ) ) |
| 37 | 36 | biimpar | |- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x C_ X ) -> x C_ dom F ) |
| 38 | sseqin2 | |- ( x C_ dom F <-> ( dom F i^i x ) = x ) |
|
| 39 | 37 38 | sylib | |- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x C_ X ) -> ( dom F i^i x ) = x ) |
| 40 | 39 | eqeq1d | |- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x C_ X ) -> ( ( dom F i^i x ) = (/) <-> x = (/) ) ) |
| 41 | 40 | biimpd | |- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x C_ X ) -> ( ( dom F i^i x ) = (/) -> x = (/) ) ) |
| 42 | 41 | con3d | |- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x C_ X ) -> ( -. x = (/) -> -. ( dom F i^i x ) = (/) ) ) |
| 43 | 42 | expimpd | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( x C_ X /\ -. x = (/) ) -> -. ( dom F i^i x ) = (/) ) ) |
| 44 | eqcom | |- ( (/) = ( F " x ) <-> ( F " x ) = (/) ) |
|
| 45 | imadisj | |- ( ( F " x ) = (/) <-> ( dom F i^i x ) = (/) ) |
|
| 46 | 44 45 | bitri | |- ( (/) = ( F " x ) <-> ( dom F i^i x ) = (/) ) |
| 47 | 46 | notbii | |- ( -. (/) = ( F " x ) <-> -. ( dom F i^i x ) = (/) ) |
| 48 | 43 47 | imbitrrdi | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( x C_ X /\ -. x = (/) ) -> -. (/) = ( F " x ) ) ) |
| 49 | 33 48 | syld | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x e. B -> -. (/) = ( F " x ) ) ) |
| 50 | 49 | ralrimiv | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> A. x e. B -. (/) = ( F " x ) ) |
| 51 | 1 | eleq2i | |- ( (/) e. C <-> (/) e. ran ( x e. B |-> ( F " x ) ) ) |
| 52 | 0ex | |- (/) e. _V |
|
| 53 | eqid | |- ( x e. B |-> ( F " x ) ) = ( x e. B |-> ( F " x ) ) |
|
| 54 | 53 | elrnmpt | |- ( (/) e. _V -> ( (/) e. ran ( x e. B |-> ( F " x ) ) <-> E. x e. B (/) = ( F " x ) ) ) |
| 55 | 52 54 | ax-mp | |- ( (/) e. ran ( x e. B |-> ( F " x ) ) <-> E. x e. B (/) = ( F " x ) ) |
| 56 | 51 55 | bitri | |- ( (/) e. C <-> E. x e. B (/) = ( F " x ) ) |
| 57 | 56 | notbii | |- ( -. (/) e. C <-> -. E. x e. B (/) = ( F " x ) ) |
| 58 | df-nel | |- ( (/) e/ C <-> -. (/) e. C ) |
|
| 59 | ralnex | |- ( A. x e. B -. (/) = ( F " x ) <-> -. E. x e. B (/) = ( F " x ) ) |
|
| 60 | 57 58 59 | 3bitr4i | |- ( (/) e/ C <-> A. x e. B -. (/) = ( F " x ) ) |
| 61 | 50 60 | sylibr | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> (/) e/ C ) |
| 62 | 1 | eleq2i | |- ( r e. C <-> r e. ran ( x e. B |-> ( F " x ) ) ) |
| 63 | imaeq2 | |- ( x = u -> ( F " x ) = ( F " u ) ) |
|
| 64 | 63 | cbvmptv | |- ( x e. B |-> ( F " x ) ) = ( u e. B |-> ( F " u ) ) |
| 65 | 64 | elrnmpt | |- ( r e. _V -> ( r e. ran ( x e. B |-> ( F " x ) ) <-> E. u e. B r = ( F " u ) ) ) |
| 66 | 65 | elv | |- ( r e. ran ( x e. B |-> ( F " x ) ) <-> E. u e. B r = ( F " u ) ) |
| 67 | 62 66 | bitri | |- ( r e. C <-> E. u e. B r = ( F " u ) ) |
| 68 | 1 | eleq2i | |- ( s e. C <-> s e. ran ( x e. B |-> ( F " x ) ) ) |
| 69 | imaeq2 | |- ( x = v -> ( F " x ) = ( F " v ) ) |
|
| 70 | 69 | cbvmptv | |- ( x e. B |-> ( F " x ) ) = ( v e. B |-> ( F " v ) ) |
| 71 | 70 | elrnmpt | |- ( s e. _V -> ( s e. ran ( x e. B |-> ( F " x ) ) <-> E. v e. B s = ( F " v ) ) ) |
| 72 | 71 | elv | |- ( s e. ran ( x e. B |-> ( F " x ) ) <-> E. v e. B s = ( F " v ) ) |
| 73 | 68 72 | bitri | |- ( s e. C <-> E. v e. B s = ( F " v ) ) |
| 74 | 67 73 | anbi12i | |- ( ( r e. C /\ s e. C ) <-> ( E. u e. B r = ( F " u ) /\ E. v e. B s = ( F " v ) ) ) |
| 75 | reeanv | |- ( E. u e. B E. v e. B ( r = ( F " u ) /\ s = ( F " v ) ) <-> ( E. u e. B r = ( F " u ) /\ E. v e. B s = ( F " v ) ) ) |
|
| 76 | 74 75 | bitr4i | |- ( ( r e. C /\ s e. C ) <-> E. u e. B E. v e. B ( r = ( F " u ) /\ s = ( F " v ) ) ) |
| 77 | fbasssin | |- ( ( B e. ( fBas ` X ) /\ u e. B /\ v e. B ) -> E. w e. B w C_ ( u i^i v ) ) |
|
| 78 | 77 | 3expb | |- ( ( B e. ( fBas ` X ) /\ ( u e. B /\ v e. B ) ) -> E. w e. B w C_ ( u i^i v ) ) |
| 79 | 78 | 3ad2antl1 | |- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( u e. B /\ v e. B ) ) -> E. w e. B w C_ ( u i^i v ) ) |
| 80 | 79 | adantrr | |- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( ( u e. B /\ v e. B ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) ) -> E. w e. B w C_ ( u i^i v ) ) |
| 81 | eqid | |- ( F " w ) = ( F " w ) |
|
| 82 | imaeq2 | |- ( x = w -> ( F " x ) = ( F " w ) ) |
|
| 83 | 82 | rspceeqv | |- ( ( w e. B /\ ( F " w ) = ( F " w ) ) -> E. x e. B ( F " w ) = ( F " x ) ) |
| 84 | 81 83 | mpan2 | |- ( w e. B -> E. x e. B ( F " w ) = ( F " x ) ) |
| 85 | 84 | ad2antrl | |- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> E. x e. B ( F " w ) = ( F " x ) ) |
| 86 | 1 | eleq2i | |- ( ( F " w ) e. C <-> ( F " w ) e. ran ( x e. B |-> ( F " x ) ) ) |
| 87 | vex | |- w e. _V |
|
| 88 | 87 | funimaex | |- ( Fun F -> ( F " w ) e. _V ) |
| 89 | 53 | elrnmpt | |- ( ( F " w ) e. _V -> ( ( F " w ) e. ran ( x e. B |-> ( F " x ) ) <-> E. x e. B ( F " w ) = ( F " x ) ) ) |
| 90 | 12 88 89 | 3syl | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( F " w ) e. ran ( x e. B |-> ( F " x ) ) <-> E. x e. B ( F " w ) = ( F " x ) ) ) |
| 91 | 86 90 | bitrid | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( F " w ) e. C <-> E. x e. B ( F " w ) = ( F " x ) ) ) |
| 92 | 91 | ad2antrr | |- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( ( F " w ) e. C <-> E. x e. B ( F " w ) = ( F " x ) ) ) |
| 93 | 85 92 | mpbird | |- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( F " w ) e. C ) |
| 94 | imass2 | |- ( w C_ ( u i^i v ) -> ( F " w ) C_ ( F " ( u i^i v ) ) ) |
|
| 95 | 94 | ad2antll | |- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( F " w ) C_ ( F " ( u i^i v ) ) ) |
| 96 | inss1 | |- ( u i^i v ) C_ u |
|
| 97 | imass2 | |- ( ( u i^i v ) C_ u -> ( F " ( u i^i v ) ) C_ ( F " u ) ) |
|
| 98 | 96 97 | ax-mp | |- ( F " ( u i^i v ) ) C_ ( F " u ) |
| 99 | inss2 | |- ( u i^i v ) C_ v |
|
| 100 | imass2 | |- ( ( u i^i v ) C_ v -> ( F " ( u i^i v ) ) C_ ( F " v ) ) |
|
| 101 | 99 100 | ax-mp | |- ( F " ( u i^i v ) ) C_ ( F " v ) |
| 102 | 98 101 | ssini | |- ( F " ( u i^i v ) ) C_ ( ( F " u ) i^i ( F " v ) ) |
| 103 | ineq12 | |- ( ( r = ( F " u ) /\ s = ( F " v ) ) -> ( r i^i s ) = ( ( F " u ) i^i ( F " v ) ) ) |
|
| 104 | 103 | ad2antlr | |- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( r i^i s ) = ( ( F " u ) i^i ( F " v ) ) ) |
| 105 | 102 104 | sseqtrrid | |- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( F " ( u i^i v ) ) C_ ( r i^i s ) ) |
| 106 | 95 105 | sstrd | |- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( F " w ) C_ ( r i^i s ) ) |
| 107 | sseq1 | |- ( z = ( F " w ) -> ( z C_ ( r i^i s ) <-> ( F " w ) C_ ( r i^i s ) ) ) |
|
| 108 | 107 | rspcev | |- ( ( ( F " w ) e. C /\ ( F " w ) C_ ( r i^i s ) ) -> E. z e. C z C_ ( r i^i s ) ) |
| 109 | 93 106 108 | syl2anc | |- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> E. z e. C z C_ ( r i^i s ) ) |
| 110 | 109 | adantlrl | |- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( ( u e. B /\ v e. B ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> E. z e. C z C_ ( r i^i s ) ) |
| 111 | 80 110 | rexlimddv | |- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( ( u e. B /\ v e. B ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) ) -> E. z e. C z C_ ( r i^i s ) ) |
| 112 | 111 | exp32 | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( u e. B /\ v e. B ) -> ( ( r = ( F " u ) /\ s = ( F " v ) ) -> E. z e. C z C_ ( r i^i s ) ) ) ) |
| 113 | 112 | rexlimdvv | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( E. u e. B E. v e. B ( r = ( F " u ) /\ s = ( F " v ) ) -> E. z e. C z C_ ( r i^i s ) ) ) |
| 114 | 76 113 | biimtrid | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( r e. C /\ s e. C ) -> E. z e. C z C_ ( r i^i s ) ) ) |
| 115 | 114 | ralrimivv | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> A. r e. C A. s e. C E. z e. C z C_ ( r i^i s ) ) |
| 116 | 23 61 115 | 3jca | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( C =/= (/) /\ (/) e/ C /\ A. r e. C A. s e. C E. z e. C z C_ ( r i^i s ) ) ) |
| 117 | isfbas2 | |- ( Y e. V -> ( C e. ( fBas ` Y ) <-> ( C C_ ~P Y /\ ( C =/= (/) /\ (/) e/ C /\ A. r e. C A. s e. C E. z e. C z C_ ( r i^i s ) ) ) ) ) |
|
| 118 | 117 | 3ad2ant3 | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( C e. ( fBas ` Y ) <-> ( C C_ ~P Y /\ ( C =/= (/) /\ (/) e/ C /\ A. r e. C A. s e. C E. z e. C z C_ ( r i^i s ) ) ) ) ) |
| 119 | 9 116 118 | mpbir2and | |- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> C e. ( fBas ` Y ) ) |