This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a nonempty set of filters with a common base and closed under pairwise union is a filter. (Contributed by Mario Carneiro, 28-Nov-2013) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | filuni | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ∪ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 ) | |
| 2 | ssel2 | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) ) | |
| 3 | filelss | ⊢ ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑓 ) → 𝑥 ⊆ 𝑋 ) | |
| 4 | 3 | ex | ⊢ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋 ) ) |
| 5 | 2 4 | syl | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋 ) ) |
| 6 | 5 | rexlimdva | ⊢ ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) → ( ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋 ) ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ( ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋 ) ) |
| 8 | 1 7 | biimtrid | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ( 𝑥 ∈ ∪ 𝐹 → 𝑥 ⊆ 𝑋 ) ) |
| 9 | 8 | pm4.71rd | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ( 𝑥 ∈ ∪ 𝐹 ↔ ( 𝑥 ⊆ 𝑋 ∧ 𝑥 ∈ ∪ 𝐹 ) ) ) |
| 10 | ssn0 | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ) → ( Fil ‘ 𝑋 ) ≠ ∅ ) | |
| 11 | fvprc | ⊢ ( ¬ 𝑋 ∈ V → ( Fil ‘ 𝑋 ) = ∅ ) | |
| 12 | 11 | necon1ai | ⊢ ( ( Fil ‘ 𝑋 ) ≠ ∅ → 𝑋 ∈ V ) |
| 13 | 10 12 | syl | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ) → 𝑋 ∈ V ) |
| 14 | 13 | 3adant3 | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → 𝑋 ∈ V ) |
| 15 | filtop | ⊢ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝑓 ) | |
| 16 | 2 15 | syl | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → 𝑋 ∈ 𝑓 ) |
| 17 | 16 | a1d | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → 𝑋 ∈ 𝑓 ) ) |
| 18 | 17 | ralimdva | ⊢ ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) → ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ∀ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) ) |
| 19 | r19.2z | ⊢ ( ( 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) → ∃ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) | |
| 20 | 19 | ex | ⊢ ( 𝐹 ≠ ∅ → ( ∀ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) ) |
| 21 | 18 20 | sylan9 | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ) → ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ∃ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) ) |
| 22 | 21 | 3impia | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ∃ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) |
| 23 | eluni2 | ⊢ ( 𝑋 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 ) | |
| 24 | 22 23 | sylibr | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → 𝑋 ∈ ∪ 𝐹 ) |
| 25 | sbcel1v | ⊢ ( [ 𝑋 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ 𝑋 ∈ ∪ 𝐹 ) | |
| 26 | 24 25 | sylibr | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → [ 𝑋 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) |
| 27 | 0nelfil | ⊢ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝑓 ) | |
| 28 | 2 27 | syl | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑓 ∈ 𝐹 ) → ¬ ∅ ∈ 𝑓 ) |
| 29 | 28 | ralrimiva | ⊢ ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) → ∀ 𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓 ) |
| 30 | 29 | 3ad2ant1 | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ∀ 𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓 ) |
| 31 | sbcel1v | ⊢ ( [ ∅ / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∅ ∈ ∪ 𝐹 ) | |
| 32 | eluni2 | ⊢ ( ∅ ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 ∅ ∈ 𝑓 ) | |
| 33 | 31 32 | bitri | ⊢ ( [ ∅ / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 ∅ ∈ 𝑓 ) |
| 34 | 33 | notbii | ⊢ ( ¬ [ ∅ / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ¬ ∃ 𝑓 ∈ 𝐹 ∅ ∈ 𝑓 ) |
| 35 | ralnex | ⊢ ( ∀ 𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓 ↔ ¬ ∃ 𝑓 ∈ 𝐹 ∅ ∈ 𝑓 ) | |
| 36 | 34 35 | bitr4i | ⊢ ( ¬ [ ∅ / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∀ 𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓 ) |
| 37 | 30 36 | sylibr | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ¬ [ ∅ / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) |
| 38 | simp13 | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) | |
| 39 | r19.29 | ⊢ ( ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 ) → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) | |
| 40 | 39 | ex | ⊢ ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ( ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) |
| 41 | 38 40 | syl | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ( ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) |
| 42 | simp1 | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → 𝐹 ⊆ ( Fil ‘ 𝑋 ) ) | |
| 43 | simp1 | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → 𝐹 ⊆ ( Fil ‘ 𝑋 ) ) | |
| 44 | simpl | ⊢ ( ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) → 𝑓 ∈ 𝐹 ) | |
| 45 | 43 44 2 | syl2an | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) ) |
| 46 | simprrr | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) → 𝑥 ∈ 𝑓 ) | |
| 47 | simpl2 | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) → 𝑦 ⊆ 𝑋 ) | |
| 48 | simpl3 | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) → 𝑥 ⊆ 𝑦 ) | |
| 49 | filss | ⊢ ( ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑓 ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ) → 𝑦 ∈ 𝑓 ) | |
| 50 | 45 46 47 48 49 | syl13anc | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) ) ) → 𝑦 ∈ 𝑓 ) |
| 51 | 50 | expr | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) ∧ 𝑓 ∈ 𝐹 ) → ( ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) → 𝑦 ∈ 𝑓 ) ) |
| 52 | 51 | reximdva | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ( ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) → ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) ) |
| 53 | 42 52 | syl3an1 | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ( ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓 ) → ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) ) |
| 54 | 41 53 | syld | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ( ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) ) |
| 55 | sbcel1v | ⊢ ( [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ 𝑥 ∈ ∪ 𝐹 ) | |
| 56 | 55 1 | bitri | ⊢ ( [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 ) |
| 57 | sbcel1v | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ 𝑦 ∈ ∪ 𝐹 ) | |
| 58 | eluni2 | ⊢ ( 𝑦 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) | |
| 59 | 57 58 | bitri | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) |
| 60 | 54 56 59 | 3imtr4g | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦 ) → ( [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 → [ 𝑦 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) ) |
| 61 | simp13 | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) | |
| 62 | r19.29 | ⊢ ( ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ) → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ) | |
| 63 | 62 | ex | ⊢ ( ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ( ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ) ) |
| 64 | 61 63 | syl | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → ( ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 → ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ) ) |
| 65 | simp11 | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → 𝐹 ⊆ ( Fil ‘ 𝑋 ) ) | |
| 66 | r19.29 | ⊢ ( ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) → ∃ 𝑔 ∈ 𝐹 ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) ) | |
| 67 | 66 | ex | ⊢ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ( ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ 𝑔 ∈ 𝐹 ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) ) ) |
| 68 | elun1 | ⊢ ( 𝑦 ∈ 𝑓 → 𝑦 ∈ ( 𝑓 ∪ 𝑔 ) ) | |
| 69 | elun2 | ⊢ ( 𝑥 ∈ 𝑔 → 𝑥 ∈ ( 𝑓 ∪ 𝑔 ) ) | |
| 70 | 68 69 | anim12i | ⊢ ( ( 𝑦 ∈ 𝑓 ∧ 𝑥 ∈ 𝑔 ) → ( 𝑦 ∈ ( 𝑓 ∪ 𝑔 ) ∧ 𝑥 ∈ ( 𝑓 ∪ 𝑔 ) ) ) |
| 71 | eleq2 | ⊢ ( ℎ = ( 𝑓 ∪ 𝑔 ) → ( 𝑦 ∈ ℎ ↔ 𝑦 ∈ ( 𝑓 ∪ 𝑔 ) ) ) | |
| 72 | eleq2 | ⊢ ( ℎ = ( 𝑓 ∪ 𝑔 ) → ( 𝑥 ∈ ℎ ↔ 𝑥 ∈ ( 𝑓 ∪ 𝑔 ) ) ) | |
| 73 | 71 72 | anbi12d | ⊢ ( ℎ = ( 𝑓 ∪ 𝑔 ) → ( ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ↔ ( 𝑦 ∈ ( 𝑓 ∪ 𝑔 ) ∧ 𝑥 ∈ ( 𝑓 ∪ 𝑔 ) ) ) ) |
| 74 | 73 | rspcev | ⊢ ( ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ ( 𝑦 ∈ ( 𝑓 ∪ 𝑔 ) ∧ 𝑥 ∈ ( 𝑓 ∪ 𝑔 ) ) ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) |
| 75 | 70 74 | sylan2 | ⊢ ( ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ ( 𝑦 ∈ 𝑓 ∧ 𝑥 ∈ 𝑔 ) ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) |
| 76 | 75 | an12s | ⊢ ( ( 𝑦 ∈ 𝑓 ∧ ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) |
| 77 | 76 | ex | ⊢ ( 𝑦 ∈ 𝑓 → ( ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
| 78 | 77 | ad2antlr | ⊢ ( ( ( 𝑓 ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ∧ 𝑔 ∈ 𝐹 ) → ( ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
| 79 | 78 | rexlimdva | ⊢ ( ( 𝑓 ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) → ( ∃ 𝑔 ∈ 𝐹 ( ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
| 80 | 67 79 | syl9r | ⊢ ( ( 𝑓 ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) → ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 → ( ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) ) |
| 81 | 80 | impr | ⊢ ( ( 𝑓 ∈ 𝐹 ∧ ( 𝑦 ∈ 𝑓 ∧ ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ) → ( ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
| 82 | 81 | ancom2s | ⊢ ( ( 𝑓 ∈ 𝐹 ∧ ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ) → ( ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
| 83 | 82 | rexlimiva | ⊢ ( ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) → ( ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) ) |
| 84 | 83 | imp | ⊢ ( ( ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ∧ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) ) |
| 85 | ssel2 | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ ℎ ∈ 𝐹 ) → ℎ ∈ ( Fil ‘ 𝑋 ) ) | |
| 86 | filin | ⊢ ( ( ℎ ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) → ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) | |
| 87 | 86 | 3expib | ⊢ ( ℎ ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) → ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) ) |
| 88 | 85 87 | syl | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ ℎ ∈ 𝐹 ) → ( ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) → ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) ) |
| 89 | 88 | reximdva | ⊢ ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) → ( ∃ ℎ ∈ 𝐹 ( 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) ) |
| 90 | 65 84 89 | syl2im | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → ( ( ∃ 𝑓 ∈ 𝐹 ( ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓 ) ∧ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) ) |
| 91 | 64 90 | syland | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → ( ( ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ∧ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) → ∃ ℎ ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) ) |
| 92 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) | |
| 93 | 55 92 | bitri | ⊢ ( [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) |
| 94 | 59 93 | anbi12i | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ∧ [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) ↔ ( ∃ 𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ∧ ∃ 𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 ) ) |
| 95 | sbcel1v | ⊢ ( [ ( 𝑦 ∩ 𝑥 ) / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ( 𝑦 ∩ 𝑥 ) ∈ ∪ 𝐹 ) | |
| 96 | eluni2 | ⊢ ( ( 𝑦 ∩ 𝑥 ) ∈ ∪ 𝐹 ↔ ∃ ℎ ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) | |
| 97 | 95 96 | bitri | ⊢ ( [ ( 𝑦 ∩ 𝑥 ) / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ↔ ∃ ℎ ∈ 𝐹 ( 𝑦 ∩ 𝑥 ) ∈ ℎ ) |
| 98 | 91 94 97 | 3imtr4g | ⊢ ( ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋 ) → ( ( [ 𝑦 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ∧ [ 𝑥 / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) → [ ( 𝑦 ∩ 𝑥 ) / 𝑥 ] 𝑥 ∈ ∪ 𝐹 ) ) |
| 99 | 9 14 26 37 60 98 | isfild | ⊢ ( ( 𝐹 ⊆ ( Fil ‘ 𝑋 ) ∧ 𝐹 ≠ ∅ ∧ ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐹 ( 𝑓 ∪ 𝑔 ) ∈ 𝐹 ) → ∪ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |