This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No filter base contains the empty set. (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Mario Carneiro, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0nelfb | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ¬ ∅ ∈ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → 𝐵 ∈ dom fBas ) | |
| 2 | isfbas | ⊢ ( 𝐵 ∈ dom fBas → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) |
| 4 | 3 | ibi | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) |
| 5 | simpr2 | ⊢ ( ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) → ∅ ∉ 𝐹 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ∅ ∉ 𝐹 ) |
| 7 | df-nel | ⊢ ( ∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹 ) | |
| 8 | 6 7 | sylib | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ¬ ∅ ∈ 𝐹 ) |