This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Give a formula for the polynomial evaluation homomorphism. (Contributed by SN, 26-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsval3.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsval3.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsval3.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlsval3.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| evlsval3.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evlsval3.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsval3.t | ⊢ 𝑇 = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) | ||
| evlsval3.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑇 ) | ||
| evlsval3.w | ⊢ ↑ = ( .g ‘ 𝑀 ) | ||
| evlsval3.x | ⊢ · = ( .r ‘ 𝑇 ) | ||
| evlsval3.e | ⊢ 𝐸 = ( 𝑝 ∈ 𝐵 ↦ ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) | ||
| evlsval3.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) | ||
| evlsval3.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) | ||
| evlsval3.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlsval3.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsval3.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| Assertion | evlsval3 | ⊢ ( 𝜑 → 𝑄 = 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsval3.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsval3.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlsval3.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | evlsval3.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 5 | evlsval3.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 6 | evlsval3.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 7 | evlsval3.t | ⊢ 𝑇 = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) | |
| 8 | evlsval3.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑇 ) | |
| 9 | evlsval3.w | ⊢ ↑ = ( .g ‘ 𝑀 ) | |
| 10 | evlsval3.x | ⊢ · = ( .r ‘ 𝑇 ) | |
| 11 | evlsval3.e | ⊢ 𝐸 = ( 𝑝 ∈ 𝐵 ↦ ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) | |
| 12 | evlsval3.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) | |
| 13 | evlsval3.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) | |
| 14 | evlsval3.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 15 | evlsval3.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 16 | evlsval3.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 17 | eqid | ⊢ ( 𝐼 mVar 𝑈 ) = ( 𝐼 mVar 𝑈 ) | |
| 18 | eqid | ⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) | |
| 19 | 1 2 17 6 7 5 18 12 13 | evlsval | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( ℩ 𝑓 ∈ ( 𝑃 RingHom 𝑇 ) ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) ) |
| 20 | 14 15 16 19 | syl3anc | ⊢ ( 𝜑 → 𝑄 = ( ℩ 𝑓 ∈ ( 𝑃 RingHom 𝑇 ) ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) ) |
| 21 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 22 | 6 | subrgcrng | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑈 ∈ CRing ) |
| 23 | 15 16 22 | syl2anc | ⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
| 24 | ovexd | ⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) ∈ V ) | |
| 25 | 7 | pwscrng | ⊢ ( ( 𝑆 ∈ CRing ∧ ( 𝐾 ↑m 𝐼 ) ∈ V ) → 𝑇 ∈ CRing ) |
| 26 | 15 24 25 | syl2anc | ⊢ ( 𝜑 → 𝑇 ∈ CRing ) |
| 27 | 5 | subrgss | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐾 ) |
| 28 | 16 27 | syl | ⊢ ( 𝜑 → 𝑅 ⊆ 𝐾 ) |
| 29 | 28 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ↾ 𝑅 ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ) |
| 30 | 12 29 | eqtr4id | ⊢ ( 𝜑 → 𝐹 = ( ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ↾ 𝑅 ) ) |
| 31 | 15 | crngringd | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 32 | eqid | ⊢ ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) | |
| 33 | 7 5 32 | pwsdiagrhm | ⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐾 ↑m 𝐼 ) ∈ V ) → ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ∈ ( 𝑆 RingHom 𝑇 ) ) |
| 34 | 31 24 33 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ∈ ( 𝑆 RingHom 𝑇 ) ) |
| 35 | 6 | resrhm | ⊢ ( ( ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ↾ 𝑅 ) ∈ ( 𝑈 RingHom 𝑇 ) ) |
| 36 | 34 16 35 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐾 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ↾ 𝑅 ) ∈ ( 𝑈 RingHom 𝑇 ) ) |
| 37 | 30 36 | eqeltrd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑈 RingHom 𝑇 ) ) |
| 38 | 5 | fvexi | ⊢ 𝐾 ∈ V |
| 39 | elmapg | ⊢ ( ( 𝐾 ∈ V ∧ 𝐼 ∈ 𝑉 ) → ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↔ 𝑎 : 𝐼 ⟶ 𝐾 ) ) | |
| 40 | 38 14 39 | sylancr | ⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↔ 𝑎 : 𝐼 ⟶ 𝐾 ) ) |
| 41 | 40 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑎 : 𝐼 ⟶ 𝐾 ) |
| 42 | 41 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑎 : 𝐼 ⟶ 𝐾 ) |
| 43 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑥 ∈ 𝐼 ) | |
| 44 | 42 43 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑎 ‘ 𝑥 ) ∈ 𝐾 ) |
| 45 | 44 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 46 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐾 ↑m 𝐼 ) ∈ V ) | |
| 47 | 7 5 21 | pwselbasb | ⊢ ( ( 𝑆 ∈ CRing ∧ ( 𝐾 ↑m 𝐼 ) ∈ V ) → ( ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ↔ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) ) |
| 48 | 15 46 47 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ↔ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) ) |
| 49 | 45 48 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ) |
| 50 | 49 13 | fmptd | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ ( Base ‘ 𝑇 ) ) |
| 51 | 2 3 21 4 8 9 10 17 11 14 23 26 37 50 18 | evlslem1 | ⊢ ( 𝜑 → ( 𝐸 ∈ ( 𝑃 RingHom 𝑇 ) ∧ ( 𝐸 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝐸 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) |
| 52 | 51 | simp2d | ⊢ ( 𝜑 → ( 𝐸 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ) |
| 53 | 51 | simp3d | ⊢ ( 𝜑 → ( 𝐸 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) |
| 54 | 51 | simp1d | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝑃 RingHom 𝑇 ) ) |
| 55 | 2 21 18 17 14 23 26 37 50 | evlseu | ⊢ ( 𝜑 → ∃! 𝑓 ∈ ( 𝑃 RingHom 𝑇 ) ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) |
| 56 | coeq1 | ⊢ ( 𝑓 = 𝐸 → ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = ( 𝐸 ∘ ( algSc ‘ 𝑃 ) ) ) | |
| 57 | 56 | eqeq1d | ⊢ ( 𝑓 = 𝐸 → ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ↔ ( 𝐸 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ) ) |
| 58 | coeq1 | ⊢ ( 𝑓 = 𝐸 → ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = ( 𝐸 ∘ ( 𝐼 mVar 𝑈 ) ) ) | |
| 59 | 58 | eqeq1d | ⊢ ( 𝑓 = 𝐸 → ( ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ↔ ( 𝐸 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) |
| 60 | 57 59 | anbi12d | ⊢ ( 𝑓 = 𝐸 → ( ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ↔ ( ( 𝐸 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝐸 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) ) |
| 61 | 60 | riota2 | ⊢ ( ( 𝐸 ∈ ( 𝑃 RingHom 𝑇 ) ∧ ∃! 𝑓 ∈ ( 𝑃 RingHom 𝑇 ) ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) → ( ( ( 𝐸 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝐸 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ↔ ( ℩ 𝑓 ∈ ( 𝑃 RingHom 𝑇 ) ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) = 𝐸 ) ) |
| 62 | 54 55 61 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐸 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝐸 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ↔ ( ℩ 𝑓 ∈ ( 𝑃 RingHom 𝑇 ) ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) = 𝐸 ) ) |
| 63 | 52 53 62 | mpbi2and | ⊢ ( 𝜑 → ( ℩ 𝑓 ∈ ( 𝑃 RingHom 𝑇 ) ( ( 𝑓 ∘ ( algSc ‘ 𝑃 ) ) = 𝐹 ∧ ( 𝑓 ∘ ( 𝐼 mVar 𝑈 ) ) = 𝐺 ) ) = 𝐸 ) |
| 64 | 20 63 | eqtrd | ⊢ ( 𝜑 → 𝑄 = 𝐸 ) |