This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the base set of a structure product. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsbas.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsbas.f | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| pwselbas.v | ⊢ 𝑉 = ( Base ‘ 𝑌 ) | ||
| Assertion | pwselbasb | ⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍 ) → ( 𝑋 ∈ 𝑉 ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsbas.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsbas.f | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | pwselbas.v | ⊢ 𝑉 = ( Base ‘ 𝑌 ) | |
| 4 | 1 2 | pwsbas | ⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍 ) → ( 𝐵 ↑m 𝐼 ) = ( Base ‘ 𝑌 ) ) |
| 5 | 4 3 | eqtr4di | ⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍 ) → ( 𝐵 ↑m 𝐼 ) = 𝑉 ) |
| 6 | 5 | eleq2d | ⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍 ) → ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ↔ 𝑋 ∈ 𝑉 ) ) |
| 7 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 8 | elmapg | ⊢ ( ( 𝐵 ∈ V ∧ 𝐼 ∈ 𝑍 ) → ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) ) | |
| 9 | 7 8 | mpan | ⊢ ( 𝐼 ∈ 𝑍 → ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍 ) → ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) ) |
| 11 | 6 10 | bitr3d | ⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍 ) → ( 𝑋 ∈ 𝑉 ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) ) |