This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Give a formula for the polynomial evaluation homomorphism. (Contributed by SN, 26-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsval3.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsval3.p | |- P = ( I mPoly U ) |
||
| evlsval3.b | |- B = ( Base ` P ) |
||
| evlsval3.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| evlsval3.k | |- K = ( Base ` S ) |
||
| evlsval3.u | |- U = ( S |`s R ) |
||
| evlsval3.t | |- T = ( S ^s ( K ^m I ) ) |
||
| evlsval3.m | |- M = ( mulGrp ` T ) |
||
| evlsval3.w | |- .^ = ( .g ` M ) |
||
| evlsval3.x | |- .x. = ( .r ` T ) |
||
| evlsval3.e | |- E = ( p e. B |-> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) |
||
| evlsval3.f | |- F = ( x e. R |-> ( ( K ^m I ) X. { x } ) ) |
||
| evlsval3.g | |- G = ( x e. I |-> ( a e. ( K ^m I ) |-> ( a ` x ) ) ) |
||
| evlsval3.i | |- ( ph -> I e. V ) |
||
| evlsval3.s | |- ( ph -> S e. CRing ) |
||
| evlsval3.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| Assertion | evlsval3 | |- ( ph -> Q = E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsval3.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsval3.p | |- P = ( I mPoly U ) |
|
| 3 | evlsval3.b | |- B = ( Base ` P ) |
|
| 4 | evlsval3.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 5 | evlsval3.k | |- K = ( Base ` S ) |
|
| 6 | evlsval3.u | |- U = ( S |`s R ) |
|
| 7 | evlsval3.t | |- T = ( S ^s ( K ^m I ) ) |
|
| 8 | evlsval3.m | |- M = ( mulGrp ` T ) |
|
| 9 | evlsval3.w | |- .^ = ( .g ` M ) |
|
| 10 | evlsval3.x | |- .x. = ( .r ` T ) |
|
| 11 | evlsval3.e | |- E = ( p e. B |-> ( T gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( M gsum ( b oF .^ G ) ) ) ) ) ) |
|
| 12 | evlsval3.f | |- F = ( x e. R |-> ( ( K ^m I ) X. { x } ) ) |
|
| 13 | evlsval3.g | |- G = ( x e. I |-> ( a e. ( K ^m I ) |-> ( a ` x ) ) ) |
|
| 14 | evlsval3.i | |- ( ph -> I e. V ) |
|
| 15 | evlsval3.s | |- ( ph -> S e. CRing ) |
|
| 16 | evlsval3.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 17 | eqid | |- ( I mVar U ) = ( I mVar U ) |
|
| 18 | eqid | |- ( algSc ` P ) = ( algSc ` P ) |
|
| 19 | 1 2 17 6 7 5 18 12 13 | evlsval | |- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q = ( iota_ f e. ( P RingHom T ) ( ( f o. ( algSc ` P ) ) = F /\ ( f o. ( I mVar U ) ) = G ) ) ) |
| 20 | 14 15 16 19 | syl3anc | |- ( ph -> Q = ( iota_ f e. ( P RingHom T ) ( ( f o. ( algSc ` P ) ) = F /\ ( f o. ( I mVar U ) ) = G ) ) ) |
| 21 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 22 | 6 | subrgcrng | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> U e. CRing ) |
| 23 | 15 16 22 | syl2anc | |- ( ph -> U e. CRing ) |
| 24 | ovexd | |- ( ph -> ( K ^m I ) e. _V ) |
|
| 25 | 7 | pwscrng | |- ( ( S e. CRing /\ ( K ^m I ) e. _V ) -> T e. CRing ) |
| 26 | 15 24 25 | syl2anc | |- ( ph -> T e. CRing ) |
| 27 | 5 | subrgss | |- ( R e. ( SubRing ` S ) -> R C_ K ) |
| 28 | 16 27 | syl | |- ( ph -> R C_ K ) |
| 29 | 28 | resmptd | |- ( ph -> ( ( x e. K |-> ( ( K ^m I ) X. { x } ) ) |` R ) = ( x e. R |-> ( ( K ^m I ) X. { x } ) ) ) |
| 30 | 12 29 | eqtr4id | |- ( ph -> F = ( ( x e. K |-> ( ( K ^m I ) X. { x } ) ) |` R ) ) |
| 31 | 15 | crngringd | |- ( ph -> S e. Ring ) |
| 32 | eqid | |- ( x e. K |-> ( ( K ^m I ) X. { x } ) ) = ( x e. K |-> ( ( K ^m I ) X. { x } ) ) |
|
| 33 | 7 5 32 | pwsdiagrhm | |- ( ( S e. Ring /\ ( K ^m I ) e. _V ) -> ( x e. K |-> ( ( K ^m I ) X. { x } ) ) e. ( S RingHom T ) ) |
| 34 | 31 24 33 | syl2anc | |- ( ph -> ( x e. K |-> ( ( K ^m I ) X. { x } ) ) e. ( S RingHom T ) ) |
| 35 | 6 | resrhm | |- ( ( ( x e. K |-> ( ( K ^m I ) X. { x } ) ) e. ( S RingHom T ) /\ R e. ( SubRing ` S ) ) -> ( ( x e. K |-> ( ( K ^m I ) X. { x } ) ) |` R ) e. ( U RingHom T ) ) |
| 36 | 34 16 35 | syl2anc | |- ( ph -> ( ( x e. K |-> ( ( K ^m I ) X. { x } ) ) |` R ) e. ( U RingHom T ) ) |
| 37 | 30 36 | eqeltrd | |- ( ph -> F e. ( U RingHom T ) ) |
| 38 | 5 | fvexi | |- K e. _V |
| 39 | elmapg | |- ( ( K e. _V /\ I e. V ) -> ( a e. ( K ^m I ) <-> a : I --> K ) ) |
|
| 40 | 38 14 39 | sylancr | |- ( ph -> ( a e. ( K ^m I ) <-> a : I --> K ) ) |
| 41 | 40 | biimpa | |- ( ( ph /\ a e. ( K ^m I ) ) -> a : I --> K ) |
| 42 | 41 | adantlr | |- ( ( ( ph /\ x e. I ) /\ a e. ( K ^m I ) ) -> a : I --> K ) |
| 43 | simplr | |- ( ( ( ph /\ x e. I ) /\ a e. ( K ^m I ) ) -> x e. I ) |
|
| 44 | 42 43 | ffvelcdmd | |- ( ( ( ph /\ x e. I ) /\ a e. ( K ^m I ) ) -> ( a ` x ) e. K ) |
| 45 | 44 | fmpttd | |- ( ( ph /\ x e. I ) -> ( a e. ( K ^m I ) |-> ( a ` x ) ) : ( K ^m I ) --> K ) |
| 46 | ovexd | |- ( ( ph /\ x e. I ) -> ( K ^m I ) e. _V ) |
|
| 47 | 7 5 21 | pwselbasb | |- ( ( S e. CRing /\ ( K ^m I ) e. _V ) -> ( ( a e. ( K ^m I ) |-> ( a ` x ) ) e. ( Base ` T ) <-> ( a e. ( K ^m I ) |-> ( a ` x ) ) : ( K ^m I ) --> K ) ) |
| 48 | 15 46 47 | syl2an2r | |- ( ( ph /\ x e. I ) -> ( ( a e. ( K ^m I ) |-> ( a ` x ) ) e. ( Base ` T ) <-> ( a e. ( K ^m I ) |-> ( a ` x ) ) : ( K ^m I ) --> K ) ) |
| 49 | 45 48 | mpbird | |- ( ( ph /\ x e. I ) -> ( a e. ( K ^m I ) |-> ( a ` x ) ) e. ( Base ` T ) ) |
| 50 | 49 13 | fmptd | |- ( ph -> G : I --> ( Base ` T ) ) |
| 51 | 2 3 21 4 8 9 10 17 11 14 23 26 37 50 18 | evlslem1 | |- ( ph -> ( E e. ( P RingHom T ) /\ ( E o. ( algSc ` P ) ) = F /\ ( E o. ( I mVar U ) ) = G ) ) |
| 52 | 51 | simp2d | |- ( ph -> ( E o. ( algSc ` P ) ) = F ) |
| 53 | 51 | simp3d | |- ( ph -> ( E o. ( I mVar U ) ) = G ) |
| 54 | 51 | simp1d | |- ( ph -> E e. ( P RingHom T ) ) |
| 55 | 2 21 18 17 14 23 26 37 50 | evlseu | |- ( ph -> E! f e. ( P RingHom T ) ( ( f o. ( algSc ` P ) ) = F /\ ( f o. ( I mVar U ) ) = G ) ) |
| 56 | coeq1 | |- ( f = E -> ( f o. ( algSc ` P ) ) = ( E o. ( algSc ` P ) ) ) |
|
| 57 | 56 | eqeq1d | |- ( f = E -> ( ( f o. ( algSc ` P ) ) = F <-> ( E o. ( algSc ` P ) ) = F ) ) |
| 58 | coeq1 | |- ( f = E -> ( f o. ( I mVar U ) ) = ( E o. ( I mVar U ) ) ) |
|
| 59 | 58 | eqeq1d | |- ( f = E -> ( ( f o. ( I mVar U ) ) = G <-> ( E o. ( I mVar U ) ) = G ) ) |
| 60 | 57 59 | anbi12d | |- ( f = E -> ( ( ( f o. ( algSc ` P ) ) = F /\ ( f o. ( I mVar U ) ) = G ) <-> ( ( E o. ( algSc ` P ) ) = F /\ ( E o. ( I mVar U ) ) = G ) ) ) |
| 61 | 60 | riota2 | |- ( ( E e. ( P RingHom T ) /\ E! f e. ( P RingHom T ) ( ( f o. ( algSc ` P ) ) = F /\ ( f o. ( I mVar U ) ) = G ) ) -> ( ( ( E o. ( algSc ` P ) ) = F /\ ( E o. ( I mVar U ) ) = G ) <-> ( iota_ f e. ( P RingHom T ) ( ( f o. ( algSc ` P ) ) = F /\ ( f o. ( I mVar U ) ) = G ) ) = E ) ) |
| 62 | 54 55 61 | syl2anc | |- ( ph -> ( ( ( E o. ( algSc ` P ) ) = F /\ ( E o. ( I mVar U ) ) = G ) <-> ( iota_ f e. ( P RingHom T ) ( ( f o. ( algSc ` P ) ) = F /\ ( f o. ( I mVar U ) ) = G ) ) = E ) ) |
| 63 | 52 53 62 | mpbi2and | |- ( ph -> ( iota_ f e. ( P RingHom T ) ( ( f o. ( algSc ` P ) ) = F /\ ( f o. ( I mVar U ) ) = G ) ) = E ) |
| 64 | 20 63 | eqtrd | |- ( ph -> Q = E ) |