This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Diagonal homomorphism into a structure power (Rings). (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsdiagrhm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsdiagrhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| pwsdiagrhm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐼 × { 𝑥 } ) ) | ||
| Assertion | pwsdiagrhm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsdiagrhm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsdiagrhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | pwsdiagrhm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐼 × { 𝑥 } ) ) | |
| 4 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑅 ∈ Ring ) | |
| 5 | 1 | pwsring | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑌 ∈ Ring ) |
| 6 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 7 | 1 2 3 | pwsdiagghm | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑌 ) ) |
| 8 | 6 7 | sylan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑌 ) ) |
| 9 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 10 | 9 | ringmgp | ⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 11 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) = ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) | |
| 12 | 9 2 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 13 | 11 12 3 | pwsdiagmhm | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 14 | 10 13 | sylan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 15 | eqidd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | |
| 16 | eqidd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) | |
| 17 | eqid | ⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) | |
| 18 | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) | |
| 19 | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) | |
| 20 | eqid | ⊢ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( mulGrp ‘ 𝑌 ) ) | |
| 21 | eqid | ⊢ ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) | |
| 22 | 1 9 11 17 18 19 20 21 | pwsmgp | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) ) ) |
| 23 | 22 | simpld | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 24 | eqidd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) ) → ( 𝑦 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 𝑦 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) ) | |
| 25 | 22 | simprd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 26 | 25 | oveqdr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ∧ 𝑧 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) ) → ( 𝑦 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑧 ) = ( 𝑦 ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) 𝑧 ) ) |
| 27 | 15 16 15 23 24 26 | mhmpropd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑌 ) ) = ( ( mulGrp ‘ 𝑅 ) MndHom ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
| 28 | 14 27 | eleqtrrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑌 ) ) ) |
| 29 | 8 28 | jca | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑌 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑌 ) ) ) ) |
| 30 | 9 17 | isrhm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑌 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑌 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑌 ) ) ) ) ) |
| 31 | 4 5 29 30 | syl21anbrc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑌 ) ) |