This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 11-Mar-2015) (Revised by AV, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsval.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsval.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑈 ) | ||
| evlsval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsval.t | ⊢ 𝑇 = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) | ||
| evlsval.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| evlsval.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | ||
| evlsval.x | ⊢ 𝑋 = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) | ||
| evlsval.y | ⊢ 𝑌 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) | ||
| Assertion | evlsval | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( ℩ 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑓 ∘ 𝑉 ) = 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsval.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlsval.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑈 ) | |
| 4 | evlsval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 5 | evlsval.t | ⊢ 𝑇 = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) | |
| 6 | evlsval.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 7 | evlsval.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 8 | evlsval.x | ⊢ 𝑋 = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) | |
| 9 | evlsval.y | ⊢ 𝑌 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) | |
| 10 | elex | ⊢ ( 𝐼 ∈ 𝑍 → 𝐼 ∈ V ) | |
| 11 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
| 13 | 12 | csbeq1d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) = ⦋ ( Base ‘ 𝑆 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
| 14 | fvex | ⊢ ( Base ‘ 𝑆 ) ∈ V | |
| 15 | 14 | a1i | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( Base ‘ 𝑆 ) ∈ V ) |
| 16 | simplr | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → 𝑠 = 𝑆 ) | |
| 17 | 16 | fveq2d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( SubRing ‘ 𝑠 ) = ( SubRing ‘ 𝑆 ) ) |
| 18 | simpll | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → 𝑖 = 𝐼 ) | |
| 19 | oveq1 | ⊢ ( 𝑠 = 𝑆 → ( 𝑠 ↾s 𝑟 ) = ( 𝑆 ↾s 𝑟 ) ) | |
| 20 | 19 | ad2antlr | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( 𝑠 ↾s 𝑟 ) = ( 𝑆 ↾s 𝑟 ) ) |
| 21 | 18 20 | oveq12d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) |
| 22 | 21 | csbeq1d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 23 | ovexd | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ∈ V ) | |
| 24 | simprr | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) | |
| 25 | simplr | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → 𝑠 = 𝑆 ) | |
| 26 | simprl | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → 𝑏 = ( Base ‘ 𝑆 ) ) | |
| 27 | simpll | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → 𝑖 = 𝐼 ) | |
| 28 | 26 27 | oveq12d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑏 ↑m 𝑖 ) = ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) |
| 29 | 25 28 | oveq12d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) = ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) |
| 30 | 24 29 | oveq12d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) = ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) |
| 31 | 24 | fveq2d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( algSc ‘ 𝑤 ) = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) |
| 32 | 31 | coeq2d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) ) |
| 33 | 28 | xpeq1d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) = ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) |
| 34 | 33 | mpteq2dv | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ) |
| 35 | 32 34 | eqeq12d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ↔ ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ) ) |
| 36 | 25 | oveq1d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑠 ↾s 𝑟 ) = ( 𝑆 ↾s 𝑟 ) ) |
| 37 | 27 36 | oveq12d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) = ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) |
| 38 | 37 | coeq2d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) ) |
| 39 | 28 | mpteq1d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) = ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
| 40 | 27 39 | mpteq12dv | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 41 | 38 40 | eqeq12d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 42 | 35 41 | anbi12d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ↔ ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 43 | 30 42 | riotaeqbidv | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ ( 𝑏 = ( Base ‘ 𝑆 ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) → ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 44 | 43 | anassrs | ⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) ∧ 𝑤 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) → ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 45 | 23 44 | csbied | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 46 | 22 45 | eqtrd | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 47 | 17 46 | mpteq12dv | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) ∧ 𝑏 = ( Base ‘ 𝑆 ) ) → ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
| 48 | 15 47 | csbied | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ⦋ ( Base ‘ 𝑆 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
| 49 | 13 48 | eqtrd | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
| 50 | df-evls | ⊢ evalSub = ( 𝑖 ∈ V , 𝑠 ∈ CRing ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) | |
| 51 | fvex | ⊢ ( SubRing ‘ 𝑆 ) ∈ V | |
| 52 | 51 | mptex | ⊢ ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ∈ V |
| 53 | 49 50 52 | ovmpoa | ⊢ ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → ( 𝐼 evalSub 𝑆 ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
| 54 | 53 | fveq1d | ⊢ ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ‘ 𝑅 ) ) |
| 55 | 10 54 | sylan | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ‘ 𝑅 ) ) |
| 56 | 1 55 | eqtrid | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ) → 𝑄 = ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ‘ 𝑅 ) ) |
| 57 | 56 | 3adant3 | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ‘ 𝑅 ) ) |
| 58 | oveq2 | ⊢ ( 𝑟 = 𝑅 → ( 𝑆 ↾s 𝑟 ) = ( 𝑆 ↾s 𝑅 ) ) | |
| 59 | 58 | oveq2d | ⊢ ( 𝑟 = 𝑅 → ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) = ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) |
| 60 | 59 | oveq1d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) = ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) |
| 61 | 59 | fveq2d | ⊢ ( 𝑟 = 𝑅 → ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
| 62 | 61 | coeq2d | ⊢ ( 𝑟 = 𝑅 → ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) ) |
| 63 | mpteq1 | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ) | |
| 64 | 62 63 | eqeq12d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ↔ ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ) ) |
| 65 | 58 | oveq2d | ⊢ ( 𝑟 = 𝑅 → ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) = ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) |
| 66 | 65 | coeq2d | ⊢ ( 𝑟 = 𝑅 → ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) ) |
| 67 | 66 | eqeq1d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 68 | 64 67 | anbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ↔ ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 69 | 60 68 | riotaeqbidv | ⊢ ( 𝑟 = 𝑅 → ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 70 | eqid | ⊢ ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | |
| 71 | riotaex | ⊢ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ∈ V | |
| 72 | 69 70 71 | fvmpt | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ‘ 𝑅 ) = ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 73 | 4 | oveq2i | ⊢ ( 𝐼 mPoly 𝑈 ) = ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) |
| 74 | 2 73 | eqtri | ⊢ 𝑊 = ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) |
| 75 | 6 | oveq1i | ⊢ ( 𝐵 ↑m 𝐼 ) = ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) |
| 76 | 75 | oveq2i | ⊢ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) |
| 77 | 5 76 | eqtri | ⊢ 𝑇 = ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) |
| 78 | 74 77 | oveq12i | ⊢ ( 𝑊 RingHom 𝑇 ) = ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) |
| 79 | 78 | a1i | ⊢ ( ⊤ → ( 𝑊 RingHom 𝑇 ) = ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ) |
| 80 | 74 | fveq2i | ⊢ ( algSc ‘ 𝑊 ) = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) |
| 81 | 7 80 | eqtri | ⊢ 𝐴 = ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) |
| 82 | 81 | coeq2i | ⊢ ( 𝑓 ∘ 𝐴 ) = ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) |
| 83 | 75 | xpeq1i | ⊢ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) = ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) |
| 84 | 83 | mpteq2i | ⊢ ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) |
| 85 | 8 84 | eqtri | ⊢ 𝑋 = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) |
| 86 | 82 85 | eqeq12i | ⊢ ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ↔ ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ) |
| 87 | 4 | oveq2i | ⊢ ( 𝐼 mVar 𝑈 ) = ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) |
| 88 | 3 87 | eqtri | ⊢ 𝑉 = ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) |
| 89 | 88 | coeq2i | ⊢ ( 𝑓 ∘ 𝑉 ) = ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) |
| 90 | eqid | ⊢ ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) | |
| 91 | 75 90 | mpteq12i | ⊢ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) = ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) |
| 92 | 91 | mpteq2i | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
| 93 | 9 92 | eqtri | ⊢ 𝑌 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
| 94 | 89 93 | eqeq12i | ⊢ ( ( 𝑓 ∘ 𝑉 ) = 𝑌 ↔ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 95 | 86 94 | anbi12i | ⊢ ( ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑓 ∘ 𝑉 ) = 𝑌 ) ↔ ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 96 | 95 | a1i | ⊢ ( ⊤ → ( ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑓 ∘ 𝑉 ) = 𝑌 ) ↔ ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 97 | 79 96 | riotaeqbidv | ⊢ ( ⊤ → ( ℩ 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑓 ∘ 𝑉 ) = 𝑌 ) ) = ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 98 | 97 | mptru | ⊢ ( ℩ 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑓 ∘ 𝑉 ) = 𝑌 ) ) = ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑅 ) ) ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑅 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 99 | 72 98 | eqtr4di | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ‘ 𝑅 ) = ( ℩ 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑓 ∘ 𝑉 ) = 𝑌 ) ) ) |
| 100 | 99 | 3ad2ant3 | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ( ℩ 𝑓 ∈ ( ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) RingHom ( 𝑆 ↑s ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ‘ 𝑅 ) = ( ℩ 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑓 ∘ 𝑉 ) = 𝑌 ) ) ) |
| 101 | 57 100 | eqtrd | ⊢ ( ( 𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( ℩ 𝑓 ∈ ( 𝑊 RingHom 𝑇 ) ( ( 𝑓 ∘ 𝐴 ) = 𝑋 ∧ ( 𝑓 ∘ 𝑉 ) = 𝑌 ) ) ) |