This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resrhm.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑋 ) | |
| Assertion | resrhm | ⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 RingHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resrhm.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑋 ) | |
| 2 | rhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝑇 ∈ Ring ) | |
| 3 | 1 | subrgring | ⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
| 4 | 2 3 | anim12ci | ⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑈 ∈ Ring ∧ 𝑇 ∈ Ring ) ) |
| 5 | rhmghm | ⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 6 | subrgsubg | ⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑆 ) → 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) | |
| 7 | 1 | resghm | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 GrpHom 𝑇 ) ) |
| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 GrpHom 𝑇 ) ) |
| 9 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 10 | eqid | ⊢ ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 ) | |
| 11 | 9 10 | rhmmhm | ⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
| 12 | 9 | subrgsubm | ⊢ ( 𝑋 ∈ ( SubRing ‘ 𝑆 ) → 𝑋 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) |
| 13 | eqid | ⊢ ( ( mulGrp ‘ 𝑆 ) ↾s 𝑋 ) = ( ( mulGrp ‘ 𝑆 ) ↾s 𝑋 ) | |
| 14 | 13 | resmhm | ⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MndHom ( mulGrp ‘ 𝑇 ) ) ∧ 𝑋 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑆 ) ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( ( ( mulGrp ‘ 𝑆 ) ↾s 𝑋 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
| 15 | 11 12 14 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( ( ( mulGrp ‘ 𝑆 ) ↾s 𝑋 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
| 16 | rhmrcl1 | ⊢ ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) → 𝑆 ∈ Ring ) | |
| 17 | 1 9 | mgpress | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( mulGrp ‘ 𝑆 ) ↾s 𝑋 ) = ( mulGrp ‘ 𝑈 ) ) |
| 18 | 16 17 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( mulGrp ‘ 𝑆 ) ↾s 𝑋 ) = ( mulGrp ‘ 𝑈 ) ) |
| 19 | 18 | oveq1d | ⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( ( mulGrp ‘ 𝑆 ) ↾s 𝑋 ) MndHom ( mulGrp ‘ 𝑇 ) ) = ( ( mulGrp ‘ 𝑈 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
| 20 | 15 19 | eleqtrd | ⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( ( mulGrp ‘ 𝑈 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) |
| 21 | 8 20 | jca | ⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 GrpHom 𝑇 ) ∧ ( 𝐹 ↾ 𝑋 ) ∈ ( ( mulGrp ‘ 𝑈 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) |
| 22 | eqid | ⊢ ( mulGrp ‘ 𝑈 ) = ( mulGrp ‘ 𝑈 ) | |
| 23 | 22 10 | isrhm | ⊢ ( ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 RingHom 𝑇 ) ↔ ( ( 𝑈 ∈ Ring ∧ 𝑇 ∈ Ring ) ∧ ( ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 GrpHom 𝑇 ) ∧ ( 𝐹 ↾ 𝑋 ) ∈ ( ( mulGrp ‘ 𝑈 ) MndHom ( mulGrp ‘ 𝑇 ) ) ) ) ) |
| 24 | 4 21 23 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑆 RingHom 𝑇 ) ∧ 𝑋 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 RingHom 𝑇 ) ) |