This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group operation is associative. (Contributed by SN, 29-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpassd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpassd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpassd.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| grpassd.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| grpassd.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| grpassd.3 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | grpassd | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpassd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpassd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpassd.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | grpassd.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | grpassd.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | grpassd.3 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 7 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |
| 8 | 3 4 5 6 7 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |