This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | faclbnd2 | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ 𝑁 ) / 2 ) ≤ ( ! ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sq2 | ⊢ ( 2 ↑ 2 ) = 4 | |
| 2 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 3 | 1 2 | eqtr4i | ⊢ ( 2 ↑ 2 ) = ( 2 · 2 ) |
| 4 | 3 | oveq2i | ⊢ ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 2 ) ) = ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 · 2 ) ) |
| 5 | 2cn | ⊢ 2 ∈ ℂ | |
| 6 | expp1 | ⊢ ( ( 2 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ ( 𝑁 + 1 ) ) = ( ( 2 ↑ 𝑁 ) · 2 ) ) | |
| 7 | 5 6 | mpan | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( 𝑁 + 1 ) ) = ( ( 2 ↑ 𝑁 ) · 2 ) ) |
| 8 | 7 | oveq1d | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 · 2 ) ) = ( ( ( 2 ↑ 𝑁 ) · 2 ) / ( 2 · 2 ) ) ) |
| 9 | 4 8 | eqtrid | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 2 ) ) = ( ( ( 2 ↑ 𝑁 ) · 2 ) / ( 2 · 2 ) ) ) |
| 10 | expcl | ⊢ ( ( 2 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑁 ) ∈ ℂ ) | |
| 11 | 5 10 | mpan | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) ∈ ℂ ) |
| 12 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 13 | divmuldiv | ⊢ ( ( ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ 2 ∈ ℂ ) ∧ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) ) → ( ( ( 2 ↑ 𝑁 ) / 2 ) · ( 2 / 2 ) ) = ( ( ( 2 ↑ 𝑁 ) · 2 ) / ( 2 · 2 ) ) ) | |
| 14 | 12 12 13 | mpanr12 | ⊢ ( ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( ( 2 ↑ 𝑁 ) / 2 ) · ( 2 / 2 ) ) = ( ( ( 2 ↑ 𝑁 ) · 2 ) / ( 2 · 2 ) ) ) |
| 15 | 11 5 14 | sylancl | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 ↑ 𝑁 ) / 2 ) · ( 2 / 2 ) ) = ( ( ( 2 ↑ 𝑁 ) · 2 ) / ( 2 · 2 ) ) ) |
| 16 | 2div2e1 | ⊢ ( 2 / 2 ) = 1 | |
| 17 | 16 | oveq2i | ⊢ ( ( ( 2 ↑ 𝑁 ) / 2 ) · ( 2 / 2 ) ) = ( ( ( 2 ↑ 𝑁 ) / 2 ) · 1 ) |
| 18 | 11 | halfcld | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ 𝑁 ) / 2 ) ∈ ℂ ) |
| 19 | 18 | mulridd | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 ↑ 𝑁 ) / 2 ) · 1 ) = ( ( 2 ↑ 𝑁 ) / 2 ) ) |
| 20 | 17 19 | eqtrid | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 ↑ 𝑁 ) / 2 ) · ( 2 / 2 ) ) = ( ( 2 ↑ 𝑁 ) / 2 ) ) |
| 21 | 9 15 20 | 3eqtr2rd | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ 𝑁 ) / 2 ) = ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 2 ) ) ) |
| 22 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 23 | faclbnd | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 2 ↑ 2 ) · ( ! ‘ 𝑁 ) ) ) | |
| 24 | 22 23 | mpan | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 2 ↑ 2 ) · ( ! ‘ 𝑁 ) ) ) |
| 25 | 2re | ⊢ 2 ∈ ℝ | |
| 26 | peano2nn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) | |
| 27 | reexpcl | ⊢ ( ( 2 ∈ ℝ ∧ ( 𝑁 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℝ ) | |
| 28 | 25 26 27 | sylancr | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℝ ) |
| 29 | faccl | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ ) | |
| 30 | 29 | nnred | ⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℝ ) |
| 31 | 4re | ⊢ 4 ∈ ℝ | |
| 32 | 1 31 | eqeltri | ⊢ ( 2 ↑ 2 ) ∈ ℝ |
| 33 | 4pos | ⊢ 0 < 4 | |
| 34 | 33 1 | breqtrri | ⊢ 0 < ( 2 ↑ 2 ) |
| 35 | 32 34 | pm3.2i | ⊢ ( ( 2 ↑ 2 ) ∈ ℝ ∧ 0 < ( 2 ↑ 2 ) ) |
| 36 | ledivmul | ⊢ ( ( ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℝ ∧ ( ! ‘ 𝑁 ) ∈ ℝ ∧ ( ( 2 ↑ 2 ) ∈ ℝ ∧ 0 < ( 2 ↑ 2 ) ) ) → ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 2 ) ) ≤ ( ! ‘ 𝑁 ) ↔ ( 2 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 2 ↑ 2 ) · ( ! ‘ 𝑁 ) ) ) ) | |
| 37 | 35 36 | mp3an3 | ⊢ ( ( ( 2 ↑ ( 𝑁 + 1 ) ) ∈ ℝ ∧ ( ! ‘ 𝑁 ) ∈ ℝ ) → ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 2 ) ) ≤ ( ! ‘ 𝑁 ) ↔ ( 2 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 2 ↑ 2 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 38 | 28 30 37 | syl2anc | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 2 ) ) ≤ ( ! ‘ 𝑁 ) ↔ ( 2 ↑ ( 𝑁 + 1 ) ) ≤ ( ( 2 ↑ 2 ) · ( ! ‘ 𝑁 ) ) ) ) |
| 39 | 24 38 | mpbird | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ ( 𝑁 + 1 ) ) / ( 2 ↑ 2 ) ) ≤ ( ! ‘ 𝑁 ) ) |
| 40 | 21 39 | eqbrtrd | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ 𝑁 ) / 2 ) ≤ ( ! ‘ 𝑁 ) ) |