This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of the limits of two infinite series. (Contributed by Paul Chapman, 12-Nov-2007) (Revised by Mario Carneiro, 3-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2ser.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| iserle.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| iserle.4 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) | ||
| iserle.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ 𝐵 ) | ||
| iserle.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | ||
| iserle.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) | ||
| iserle.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ 𝑘 ) ) | ||
| Assertion | iserle | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | iserle.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | iserle.4 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) | |
| 4 | iserle.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ 𝐵 ) | |
| 5 | iserle.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 6 | iserle.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) | |
| 7 | iserle.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ 𝑘 ) ) | |
| 8 | 1 2 5 | serfre | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
| 9 | 8 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 10 | 1 2 6 | serfre | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℝ ) |
| 11 | 10 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℝ ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) | |
| 13 | 12 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 14 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → 𝜑 ) | |
| 15 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 16 | 15 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
| 17 | 16 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 18 | 14 17 5 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 19 | 14 17 6 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 20 | 14 17 7 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 21 | 13 18 19 20 | serle | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) |
| 22 | 1 2 3 4 9 11 21 | climle | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |