This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiple derivative version of dvres3a . (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvnres | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑁 ∈ ℕ0 ) ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑥 = 0 → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ) | |
| 2 | 1 | dmeqd | ⊢ ( 𝑥 = 0 → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ) |
| 3 | 2 | eqeq1d | ⊢ ( 𝑥 = 0 → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 ↔ dom ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = dom 𝐹 ) ) |
| 4 | fveq2 | ⊢ ( 𝑥 = 0 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 0 ) ) | |
| 5 | 1 | reseq1d | ⊢ ( 𝑥 = 0 → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) ) |
| 6 | 4 5 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ↔ ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 0 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) ) ) |
| 7 | 3 6 | imbi12d | ⊢ ( 𝑥 = 0 → ( ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ↔ ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 0 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) ) ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 0 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) ) ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) | |
| 10 | 9 | dmeqd | ⊢ ( 𝑥 = 𝑛 → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
| 11 | 10 | eqeq1d | ⊢ ( 𝑥 = 𝑛 → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 ↔ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 ) ) |
| 12 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) ) | |
| 13 | 9 | reseq1d | ⊢ ( 𝑥 = 𝑛 → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) |
| 14 | 12 13 | eqeq12d | ⊢ ( 𝑥 = 𝑛 → ( ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ↔ ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) |
| 15 | 11 14 | imbi12d | ⊢ ( 𝑥 = 𝑛 → ( ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ↔ ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) ) ) |
| 17 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 18 | 17 | dmeqd | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
| 19 | 18 | eqeq1d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 ↔ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) |
| 20 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) ) | |
| 21 | 17 | reseq1d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) |
| 22 | 20 21 | eqeq12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ↔ ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) ) |
| 23 | 19 22 | imbi12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ↔ ( dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) ) ) ) |
| 25 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ) | |
| 26 | 25 | dmeqd | ⊢ ( 𝑥 = 𝑁 → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 27 | 26 | eqeq1d | ⊢ ( 𝑥 = 𝑁 → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 ↔ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 ) ) |
| 28 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) ) | |
| 29 | 25 | reseq1d | ⊢ ( 𝑥 = 𝑁 → ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) |
| 30 | 28 29 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ↔ ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) ) |
| 31 | 27 30 | imbi12d | ⊢ ( 𝑥 = 𝑁 → ( ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ↔ ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) ) ) |
| 32 | 31 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑥 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑥 ) ↾ 𝑆 ) ) ) ↔ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) ) ) ) |
| 33 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 34 | 33 | adantr | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → 𝑆 ⊆ ℂ ) |
| 35 | pmresg | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ) | |
| 36 | dvn0 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝐹 ↾ 𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 0 ) = ( 𝐹 ↾ 𝑆 ) ) | |
| 37 | 34 35 36 | syl2anc | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 0 ) = ( 𝐹 ↾ 𝑆 ) ) |
| 38 | ssidd | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ℂ ⊆ ℂ ) | |
| 39 | dvn0 | ⊢ ( ( ℂ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) | |
| 40 | 38 39 | sylan | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = 𝐹 ) |
| 41 | 40 | reseq1d | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) = ( 𝐹 ↾ 𝑆 ) ) |
| 42 | 37 41 | eqtr4d | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 0 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) ) |
| 43 | 42 | a1d | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 0 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 0 ) ↾ 𝑆 ) ) ) |
| 44 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 45 | simplr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → 𝐹 ∈ ( ℂ ↑pm ℂ ) ) | |
| 46 | simprl | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → 𝑛 ∈ ℕ0 ) | |
| 47 | dvnbss | ⊢ ( ( ℂ ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑛 ∈ ℕ0 ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ dom 𝐹 ) | |
| 48 | 44 45 46 47 | mp3an2i | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ dom 𝐹 ) |
| 49 | simprr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) | |
| 50 | ssidd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ℂ ⊆ ℂ ) | |
| 51 | dvnp1 | ⊢ ( ( ℂ ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) | |
| 52 | 50 45 46 51 | syl3anc | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
| 53 | 52 | dmeqd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
| 54 | 49 53 | eqtr3d | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom 𝐹 = dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
| 55 | dvnf | ⊢ ( ( ℂ ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℂ ) | |
| 56 | 44 45 46 55 | mp3an2i | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℂ ) |
| 57 | cnex | ⊢ ℂ ∈ V | |
| 58 | 57 57 | elpm2 | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ) ) |
| 59 | 58 | simprbi | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) → dom 𝐹 ⊆ ℂ ) |
| 60 | 45 59 | syl | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom 𝐹 ⊆ ℂ ) |
| 61 | 48 60 | sstrd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ℂ ) |
| 62 | 50 56 61 | dvbss | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⊆ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
| 63 | 54 62 | eqsstrd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom 𝐹 ⊆ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
| 64 | 48 63 | eqssd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 ) |
| 65 | 64 | expr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ 𝑛 ∈ ℕ0 ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 ) ) |
| 66 | 65 | imim1d | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) ) |
| 67 | oveq2 | ⊢ ( ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) ) = ( 𝑆 D ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) | |
| 68 | 34 | adantr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → 𝑆 ⊆ ℂ ) |
| 69 | 35 | adantr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 70 | dvnp1 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝐹 ↾ 𝑆 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) ) ) | |
| 71 | 68 69 46 70 | syl3anc | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) ) ) |
| 72 | 52 | reseq1d | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) = ( ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ↾ 𝑆 ) ) |
| 73 | simpll | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → 𝑆 ∈ { ℝ , ℂ } ) | |
| 74 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 75 | 74 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 76 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 77 | 76 | ntrss2 | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ℂ ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⊆ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
| 78 | 75 61 77 | sylancr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⊆ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
| 79 | 74 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 80 | 79 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 81 | 50 56 61 80 74 | dvbssntr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ⊆ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
| 82 | 54 81 | eqsstrd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom 𝐹 ⊆ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
| 83 | 48 82 | sstrd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
| 84 | 78 83 | eqssd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
| 85 | 76 | isopn3 | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⊆ ℂ ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ∈ ( TopOpen ‘ ℂfld ) ↔ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
| 86 | 75 61 85 | sylancr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ∈ ( TopOpen ‘ ℂfld ) ↔ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) |
| 87 | 84 86 | mpbird | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 88 | 64 54 | eqtr2d | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) |
| 89 | 74 | dvres3a | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) : dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ⟶ ℂ ) ∧ ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ∈ ( TopOpen ‘ ℂfld ) ∧ dom ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) = dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ) → ( 𝑆 D ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) = ( ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ↾ 𝑆 ) ) |
| 90 | 73 56 87 88 89 | syl22anc | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( 𝑆 D ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) = ( ( ℂ D ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ) ↾ 𝑆 ) ) |
| 91 | 72 90 | eqtr4d | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) = ( 𝑆 D ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) |
| 92 | 71 91 | eqeq12d | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ↔ ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) ) = ( 𝑆 D ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) ) |
| 93 | 67 92 | imbitrrid | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) ∧ ( 𝑛 ∈ ℕ0 ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 ) ) → ( ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) ) |
| 94 | 66 93 | animpimp2impd | ⊢ ( 𝑛 ∈ ℕ0 → ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑛 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑛 ) ↾ 𝑆 ) ) ) → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↾ 𝑆 ) ) ) ) ) |
| 95 | 8 16 24 32 43 94 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) ) ) |
| 96 | 95 | com12 | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ) → ( 𝑁 ∈ ℕ0 → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) ) ) |
| 97 | 96 | 3impia | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑁 ∈ ℕ0 ) → ( dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) ) |
| 98 | 97 | imp | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝑁 ∈ ℕ0 ) ∧ dom ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) = dom 𝐹 ) → ( ( 𝑆 D𝑛 ( 𝐹 ↾ 𝑆 ) ) ‘ 𝑁 ) = ( ( ( ℂ D𝑛 𝐹 ) ‘ 𝑁 ) ↾ 𝑆 ) ) |