This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The N-times derivative is a function. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvnf | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvnff | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( 𝑆 D𝑛 𝐹 ) : ℕ0 ⟶ ( ℂ ↑pm dom 𝐹 ) ) | |
| 2 | 1 | ffvelcdmda | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( ℂ ↑pm dom 𝐹 ) ) |
| 3 | 2 | 3impa | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( ℂ ↑pm dom 𝐹 ) ) |
| 4 | cnex | ⊢ ℂ ∈ V | |
| 5 | simp2 | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) | |
| 6 | 5 | dmexd | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → dom 𝐹 ∈ V ) |
| 7 | elpm2g | ⊢ ( ( ℂ ∈ V ∧ dom 𝐹 ∈ V ) → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( ℂ ↑pm dom 𝐹 ) ↔ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℂ ∧ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom 𝐹 ) ) ) | |
| 8 | 4 6 7 | sylancr | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ ( ℂ ↑pm dom 𝐹 ) ↔ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℂ ∧ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom 𝐹 ) ) ) |
| 9 | 3 8 | mpbid | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℂ ∧ dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⊆ dom 𝐹 ) ) |
| 10 | 9 | simpld | ⊢ ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) : dom ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ⟶ ℂ ) |