This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiple derivative version of dvres3a . (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvnres | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) /\ N e. NN0 ) /\ dom ( ( CC Dn F ) ` N ) = dom F ) -> ( ( S Dn ( F |` S ) ) ` N ) = ( ( ( CC Dn F ) ` N ) |` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = 0 -> ( ( CC Dn F ) ` x ) = ( ( CC Dn F ) ` 0 ) ) |
|
| 2 | 1 | dmeqd | |- ( x = 0 -> dom ( ( CC Dn F ) ` x ) = dom ( ( CC Dn F ) ` 0 ) ) |
| 3 | 2 | eqeq1d | |- ( x = 0 -> ( dom ( ( CC Dn F ) ` x ) = dom F <-> dom ( ( CC Dn F ) ` 0 ) = dom F ) ) |
| 4 | fveq2 | |- ( x = 0 -> ( ( S Dn ( F |` S ) ) ` x ) = ( ( S Dn ( F |` S ) ) ` 0 ) ) |
|
| 5 | 1 | reseq1d | |- ( x = 0 -> ( ( ( CC Dn F ) ` x ) |` S ) = ( ( ( CC Dn F ) ` 0 ) |` S ) ) |
| 6 | 4 5 | eqeq12d | |- ( x = 0 -> ( ( ( S Dn ( F |` S ) ) ` x ) = ( ( ( CC Dn F ) ` x ) |` S ) <-> ( ( S Dn ( F |` S ) ) ` 0 ) = ( ( ( CC Dn F ) ` 0 ) |` S ) ) ) |
| 7 | 3 6 | imbi12d | |- ( x = 0 -> ( ( dom ( ( CC Dn F ) ` x ) = dom F -> ( ( S Dn ( F |` S ) ) ` x ) = ( ( ( CC Dn F ) ` x ) |` S ) ) <-> ( dom ( ( CC Dn F ) ` 0 ) = dom F -> ( ( S Dn ( F |` S ) ) ` 0 ) = ( ( ( CC Dn F ) ` 0 ) |` S ) ) ) ) |
| 8 | 7 | imbi2d | |- ( x = 0 -> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( dom ( ( CC Dn F ) ` x ) = dom F -> ( ( S Dn ( F |` S ) ) ` x ) = ( ( ( CC Dn F ) ` x ) |` S ) ) ) <-> ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( dom ( ( CC Dn F ) ` 0 ) = dom F -> ( ( S Dn ( F |` S ) ) ` 0 ) = ( ( ( CC Dn F ) ` 0 ) |` S ) ) ) ) ) |
| 9 | fveq2 | |- ( x = n -> ( ( CC Dn F ) ` x ) = ( ( CC Dn F ) ` n ) ) |
|
| 10 | 9 | dmeqd | |- ( x = n -> dom ( ( CC Dn F ) ` x ) = dom ( ( CC Dn F ) ` n ) ) |
| 11 | 10 | eqeq1d | |- ( x = n -> ( dom ( ( CC Dn F ) ` x ) = dom F <-> dom ( ( CC Dn F ) ` n ) = dom F ) ) |
| 12 | fveq2 | |- ( x = n -> ( ( S Dn ( F |` S ) ) ` x ) = ( ( S Dn ( F |` S ) ) ` n ) ) |
|
| 13 | 9 | reseq1d | |- ( x = n -> ( ( ( CC Dn F ) ` x ) |` S ) = ( ( ( CC Dn F ) ` n ) |` S ) ) |
| 14 | 12 13 | eqeq12d | |- ( x = n -> ( ( ( S Dn ( F |` S ) ) ` x ) = ( ( ( CC Dn F ) ` x ) |` S ) <-> ( ( S Dn ( F |` S ) ) ` n ) = ( ( ( CC Dn F ) ` n ) |` S ) ) ) |
| 15 | 11 14 | imbi12d | |- ( x = n -> ( ( dom ( ( CC Dn F ) ` x ) = dom F -> ( ( S Dn ( F |` S ) ) ` x ) = ( ( ( CC Dn F ) ` x ) |` S ) ) <-> ( dom ( ( CC Dn F ) ` n ) = dom F -> ( ( S Dn ( F |` S ) ) ` n ) = ( ( ( CC Dn F ) ` n ) |` S ) ) ) ) |
| 16 | 15 | imbi2d | |- ( x = n -> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( dom ( ( CC Dn F ) ` x ) = dom F -> ( ( S Dn ( F |` S ) ) ` x ) = ( ( ( CC Dn F ) ` x ) |` S ) ) ) <-> ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( dom ( ( CC Dn F ) ` n ) = dom F -> ( ( S Dn ( F |` S ) ) ` n ) = ( ( ( CC Dn F ) ` n ) |` S ) ) ) ) ) |
| 17 | fveq2 | |- ( x = ( n + 1 ) -> ( ( CC Dn F ) ` x ) = ( ( CC Dn F ) ` ( n + 1 ) ) ) |
|
| 18 | 17 | dmeqd | |- ( x = ( n + 1 ) -> dom ( ( CC Dn F ) ` x ) = dom ( ( CC Dn F ) ` ( n + 1 ) ) ) |
| 19 | 18 | eqeq1d | |- ( x = ( n + 1 ) -> ( dom ( ( CC Dn F ) ` x ) = dom F <-> dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) |
| 20 | fveq2 | |- ( x = ( n + 1 ) -> ( ( S Dn ( F |` S ) ) ` x ) = ( ( S Dn ( F |` S ) ) ` ( n + 1 ) ) ) |
|
| 21 | 17 | reseq1d | |- ( x = ( n + 1 ) -> ( ( ( CC Dn F ) ` x ) |` S ) = ( ( ( CC Dn F ) ` ( n + 1 ) ) |` S ) ) |
| 22 | 20 21 | eqeq12d | |- ( x = ( n + 1 ) -> ( ( ( S Dn ( F |` S ) ) ` x ) = ( ( ( CC Dn F ) ` x ) |` S ) <-> ( ( S Dn ( F |` S ) ) ` ( n + 1 ) ) = ( ( ( CC Dn F ) ` ( n + 1 ) ) |` S ) ) ) |
| 23 | 19 22 | imbi12d | |- ( x = ( n + 1 ) -> ( ( dom ( ( CC Dn F ) ` x ) = dom F -> ( ( S Dn ( F |` S ) ) ` x ) = ( ( ( CC Dn F ) ` x ) |` S ) ) <-> ( dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F -> ( ( S Dn ( F |` S ) ) ` ( n + 1 ) ) = ( ( ( CC Dn F ) ` ( n + 1 ) ) |` S ) ) ) ) |
| 24 | 23 | imbi2d | |- ( x = ( n + 1 ) -> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( dom ( ( CC Dn F ) ` x ) = dom F -> ( ( S Dn ( F |` S ) ) ` x ) = ( ( ( CC Dn F ) ` x ) |` S ) ) ) <-> ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F -> ( ( S Dn ( F |` S ) ) ` ( n + 1 ) ) = ( ( ( CC Dn F ) ` ( n + 1 ) ) |` S ) ) ) ) ) |
| 25 | fveq2 | |- ( x = N -> ( ( CC Dn F ) ` x ) = ( ( CC Dn F ) ` N ) ) |
|
| 26 | 25 | dmeqd | |- ( x = N -> dom ( ( CC Dn F ) ` x ) = dom ( ( CC Dn F ) ` N ) ) |
| 27 | 26 | eqeq1d | |- ( x = N -> ( dom ( ( CC Dn F ) ` x ) = dom F <-> dom ( ( CC Dn F ) ` N ) = dom F ) ) |
| 28 | fveq2 | |- ( x = N -> ( ( S Dn ( F |` S ) ) ` x ) = ( ( S Dn ( F |` S ) ) ` N ) ) |
|
| 29 | 25 | reseq1d | |- ( x = N -> ( ( ( CC Dn F ) ` x ) |` S ) = ( ( ( CC Dn F ) ` N ) |` S ) ) |
| 30 | 28 29 | eqeq12d | |- ( x = N -> ( ( ( S Dn ( F |` S ) ) ` x ) = ( ( ( CC Dn F ) ` x ) |` S ) <-> ( ( S Dn ( F |` S ) ) ` N ) = ( ( ( CC Dn F ) ` N ) |` S ) ) ) |
| 31 | 27 30 | imbi12d | |- ( x = N -> ( ( dom ( ( CC Dn F ) ` x ) = dom F -> ( ( S Dn ( F |` S ) ) ` x ) = ( ( ( CC Dn F ) ` x ) |` S ) ) <-> ( dom ( ( CC Dn F ) ` N ) = dom F -> ( ( S Dn ( F |` S ) ) ` N ) = ( ( ( CC Dn F ) ` N ) |` S ) ) ) ) |
| 32 | 31 | imbi2d | |- ( x = N -> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( dom ( ( CC Dn F ) ` x ) = dom F -> ( ( S Dn ( F |` S ) ) ` x ) = ( ( ( CC Dn F ) ` x ) |` S ) ) ) <-> ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( dom ( ( CC Dn F ) ` N ) = dom F -> ( ( S Dn ( F |` S ) ) ` N ) = ( ( ( CC Dn F ) ` N ) |` S ) ) ) ) ) |
| 33 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 34 | 33 | adantr | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> S C_ CC ) |
| 35 | pmresg | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( F |` S ) e. ( CC ^pm S ) ) |
|
| 36 | dvn0 | |- ( ( S C_ CC /\ ( F |` S ) e. ( CC ^pm S ) ) -> ( ( S Dn ( F |` S ) ) ` 0 ) = ( F |` S ) ) |
|
| 37 | 34 35 36 | syl2anc | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( ( S Dn ( F |` S ) ) ` 0 ) = ( F |` S ) ) |
| 38 | ssidd | |- ( S e. { RR , CC } -> CC C_ CC ) |
|
| 39 | dvn0 | |- ( ( CC C_ CC /\ F e. ( CC ^pm CC ) ) -> ( ( CC Dn F ) ` 0 ) = F ) |
|
| 40 | 38 39 | sylan | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( ( CC Dn F ) ` 0 ) = F ) |
| 41 | 40 | reseq1d | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( ( ( CC Dn F ) ` 0 ) |` S ) = ( F |` S ) ) |
| 42 | 37 41 | eqtr4d | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( ( S Dn ( F |` S ) ) ` 0 ) = ( ( ( CC Dn F ) ` 0 ) |` S ) ) |
| 43 | 42 | a1d | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( dom ( ( CC Dn F ) ` 0 ) = dom F -> ( ( S Dn ( F |` S ) ) ` 0 ) = ( ( ( CC Dn F ) ` 0 ) |` S ) ) ) |
| 44 | cnelprrecn | |- CC e. { RR , CC } |
|
| 45 | simplr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> F e. ( CC ^pm CC ) ) |
|
| 46 | simprl | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> n e. NN0 ) |
|
| 47 | dvnbss | |- ( ( CC e. { RR , CC } /\ F e. ( CC ^pm CC ) /\ n e. NN0 ) -> dom ( ( CC Dn F ) ` n ) C_ dom F ) |
|
| 48 | 44 45 46 47 | mp3an2i | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> dom ( ( CC Dn F ) ` n ) C_ dom F ) |
| 49 | simprr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) |
|
| 50 | ssidd | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> CC C_ CC ) |
|
| 51 | dvnp1 | |- ( ( CC C_ CC /\ F e. ( CC ^pm CC ) /\ n e. NN0 ) -> ( ( CC Dn F ) ` ( n + 1 ) ) = ( CC _D ( ( CC Dn F ) ` n ) ) ) |
|
| 52 | 50 45 46 51 | syl3anc | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> ( ( CC Dn F ) ` ( n + 1 ) ) = ( CC _D ( ( CC Dn F ) ` n ) ) ) |
| 53 | 52 | dmeqd | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom ( CC _D ( ( CC Dn F ) ` n ) ) ) |
| 54 | 49 53 | eqtr3d | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> dom F = dom ( CC _D ( ( CC Dn F ) ` n ) ) ) |
| 55 | dvnf | |- ( ( CC e. { RR , CC } /\ F e. ( CC ^pm CC ) /\ n e. NN0 ) -> ( ( CC Dn F ) ` n ) : dom ( ( CC Dn F ) ` n ) --> CC ) |
|
| 56 | 44 45 46 55 | mp3an2i | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> ( ( CC Dn F ) ` n ) : dom ( ( CC Dn F ) ` n ) --> CC ) |
| 57 | cnex | |- CC e. _V |
|
| 58 | 57 57 | elpm2 | |- ( F e. ( CC ^pm CC ) <-> ( F : dom F --> CC /\ dom F C_ CC ) ) |
| 59 | 58 | simprbi | |- ( F e. ( CC ^pm CC ) -> dom F C_ CC ) |
| 60 | 45 59 | syl | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> dom F C_ CC ) |
| 61 | 48 60 | sstrd | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> dom ( ( CC Dn F ) ` n ) C_ CC ) |
| 62 | 50 56 61 | dvbss | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> dom ( CC _D ( ( CC Dn F ) ` n ) ) C_ dom ( ( CC Dn F ) ` n ) ) |
| 63 | 54 62 | eqsstrd | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> dom F C_ dom ( ( CC Dn F ) ` n ) ) |
| 64 | 48 63 | eqssd | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> dom ( ( CC Dn F ) ` n ) = dom F ) |
| 65 | 64 | expr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ n e. NN0 ) -> ( dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F -> dom ( ( CC Dn F ) ` n ) = dom F ) ) |
| 66 | 65 | imim1d | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ n e. NN0 ) -> ( ( dom ( ( CC Dn F ) ` n ) = dom F -> ( ( S Dn ( F |` S ) ) ` n ) = ( ( ( CC Dn F ) ` n ) |` S ) ) -> ( dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F -> ( ( S Dn ( F |` S ) ) ` n ) = ( ( ( CC Dn F ) ` n ) |` S ) ) ) ) |
| 67 | oveq2 | |- ( ( ( S Dn ( F |` S ) ) ` n ) = ( ( ( CC Dn F ) ` n ) |` S ) -> ( S _D ( ( S Dn ( F |` S ) ) ` n ) ) = ( S _D ( ( ( CC Dn F ) ` n ) |` S ) ) ) |
|
| 68 | 34 | adantr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> S C_ CC ) |
| 69 | 35 | adantr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> ( F |` S ) e. ( CC ^pm S ) ) |
| 70 | dvnp1 | |- ( ( S C_ CC /\ ( F |` S ) e. ( CC ^pm S ) /\ n e. NN0 ) -> ( ( S Dn ( F |` S ) ) ` ( n + 1 ) ) = ( S _D ( ( S Dn ( F |` S ) ) ` n ) ) ) |
|
| 71 | 68 69 46 70 | syl3anc | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> ( ( S Dn ( F |` S ) ) ` ( n + 1 ) ) = ( S _D ( ( S Dn ( F |` S ) ) ` n ) ) ) |
| 72 | 52 | reseq1d | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> ( ( ( CC Dn F ) ` ( n + 1 ) ) |` S ) = ( ( CC _D ( ( CC Dn F ) ` n ) ) |` S ) ) |
| 73 | simpll | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> S e. { RR , CC } ) |
|
| 74 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 75 | 74 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 76 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 77 | 76 | ntrss2 | |- ( ( ( TopOpen ` CCfld ) e. Top /\ dom ( ( CC Dn F ) ` n ) C_ CC ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` dom ( ( CC Dn F ) ` n ) ) C_ dom ( ( CC Dn F ) ` n ) ) |
| 78 | 75 61 77 | sylancr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` dom ( ( CC Dn F ) ` n ) ) C_ dom ( ( CC Dn F ) ` n ) ) |
| 79 | 74 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 80 | 79 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 81 | 50 56 61 80 74 | dvbssntr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> dom ( CC _D ( ( CC Dn F ) ` n ) ) C_ ( ( int ` ( TopOpen ` CCfld ) ) ` dom ( ( CC Dn F ) ` n ) ) ) |
| 82 | 54 81 | eqsstrd | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> dom F C_ ( ( int ` ( TopOpen ` CCfld ) ) ` dom ( ( CC Dn F ) ` n ) ) ) |
| 83 | 48 82 | sstrd | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> dom ( ( CC Dn F ) ` n ) C_ ( ( int ` ( TopOpen ` CCfld ) ) ` dom ( ( CC Dn F ) ` n ) ) ) |
| 84 | 78 83 | eqssd | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` dom ( ( CC Dn F ) ` n ) ) = dom ( ( CC Dn F ) ` n ) ) |
| 85 | 76 | isopn3 | |- ( ( ( TopOpen ` CCfld ) e. Top /\ dom ( ( CC Dn F ) ` n ) C_ CC ) -> ( dom ( ( CC Dn F ) ` n ) e. ( TopOpen ` CCfld ) <-> ( ( int ` ( TopOpen ` CCfld ) ) ` dom ( ( CC Dn F ) ` n ) ) = dom ( ( CC Dn F ) ` n ) ) ) |
| 86 | 75 61 85 | sylancr | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> ( dom ( ( CC Dn F ) ` n ) e. ( TopOpen ` CCfld ) <-> ( ( int ` ( TopOpen ` CCfld ) ) ` dom ( ( CC Dn F ) ` n ) ) = dom ( ( CC Dn F ) ` n ) ) ) |
| 87 | 84 86 | mpbird | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> dom ( ( CC Dn F ) ` n ) e. ( TopOpen ` CCfld ) ) |
| 88 | 64 54 | eqtr2d | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> dom ( CC _D ( ( CC Dn F ) ` n ) ) = dom ( ( CC Dn F ) ` n ) ) |
| 89 | 74 | dvres3a | |- ( ( ( S e. { RR , CC } /\ ( ( CC Dn F ) ` n ) : dom ( ( CC Dn F ) ` n ) --> CC ) /\ ( dom ( ( CC Dn F ) ` n ) e. ( TopOpen ` CCfld ) /\ dom ( CC _D ( ( CC Dn F ) ` n ) ) = dom ( ( CC Dn F ) ` n ) ) ) -> ( S _D ( ( ( CC Dn F ) ` n ) |` S ) ) = ( ( CC _D ( ( CC Dn F ) ` n ) ) |` S ) ) |
| 90 | 73 56 87 88 89 | syl22anc | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> ( S _D ( ( ( CC Dn F ) ` n ) |` S ) ) = ( ( CC _D ( ( CC Dn F ) ` n ) ) |` S ) ) |
| 91 | 72 90 | eqtr4d | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> ( ( ( CC Dn F ) ` ( n + 1 ) ) |` S ) = ( S _D ( ( ( CC Dn F ) ` n ) |` S ) ) ) |
| 92 | 71 91 | eqeq12d | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> ( ( ( S Dn ( F |` S ) ) ` ( n + 1 ) ) = ( ( ( CC Dn F ) ` ( n + 1 ) ) |` S ) <-> ( S _D ( ( S Dn ( F |` S ) ) ` n ) ) = ( S _D ( ( ( CC Dn F ) ` n ) |` S ) ) ) ) |
| 93 | 67 92 | imbitrrid | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) /\ ( n e. NN0 /\ dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F ) ) -> ( ( ( S Dn ( F |` S ) ) ` n ) = ( ( ( CC Dn F ) ` n ) |` S ) -> ( ( S Dn ( F |` S ) ) ` ( n + 1 ) ) = ( ( ( CC Dn F ) ` ( n + 1 ) ) |` S ) ) ) |
| 94 | 66 93 | animpimp2impd | |- ( n e. NN0 -> ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( dom ( ( CC Dn F ) ` n ) = dom F -> ( ( S Dn ( F |` S ) ) ` n ) = ( ( ( CC Dn F ) ` n ) |` S ) ) ) -> ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( dom ( ( CC Dn F ) ` ( n + 1 ) ) = dom F -> ( ( S Dn ( F |` S ) ) ` ( n + 1 ) ) = ( ( ( CC Dn F ) ` ( n + 1 ) ) |` S ) ) ) ) ) |
| 95 | 8 16 24 32 43 94 | nn0ind | |- ( N e. NN0 -> ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( dom ( ( CC Dn F ) ` N ) = dom F -> ( ( S Dn ( F |` S ) ) ` N ) = ( ( ( CC Dn F ) ` N ) |` S ) ) ) ) |
| 96 | 95 | com12 | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) ) -> ( N e. NN0 -> ( dom ( ( CC Dn F ) ` N ) = dom F -> ( ( S Dn ( F |` S ) ) ` N ) = ( ( ( CC Dn F ) ` N ) |` S ) ) ) ) |
| 97 | 96 | 3impia | |- ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) /\ N e. NN0 ) -> ( dom ( ( CC Dn F ) ` N ) = dom F -> ( ( S Dn ( F |` S ) ) ` N ) = ( ( ( CC Dn F ) ` N ) |` S ) ) ) |
| 98 | 97 | imp | |- ( ( ( S e. { RR , CC } /\ F e. ( CC ^pm CC ) /\ N e. NN0 ) /\ dom ( ( CC Dn F ) ` N ) = dom F ) -> ( ( S Dn ( F |` S ) ) ` N ) = ( ( ( CC Dn F ) ` N ) |` S ) ) |