This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Successor iterated derivative. (Contributed by Stefan O'Rear, 15-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvnp1 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 2 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 3 | 1 2 | eleqtrdi | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 4 | seqp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ‘ 𝑁 ) ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) ( ( ℕ0 × { 𝐹 } ) ‘ ( 𝑁 + 1 ) ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ‘ 𝑁 ) ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) ( ( ℕ0 × { 𝐹 } ) ‘ ( 𝑁 + 1 ) ) ) ) |
| 6 | fvex | ⊢ ( seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ‘ 𝑁 ) ∈ V | |
| 7 | fvex | ⊢ ( ( ℕ0 × { 𝐹 } ) ‘ ( 𝑁 + 1 ) ) ∈ V | |
| 8 | 6 7 | opco1i | ⊢ ( ( seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ‘ 𝑁 ) ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) ( ( ℕ0 × { 𝐹 } ) ‘ ( 𝑁 + 1 ) ) ) = ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ‘ ( seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ‘ 𝑁 ) ) |
| 9 | 5 8 | eqtrdi | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ‘ ( seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ‘ 𝑁 ) ) ) |
| 10 | eqid | ⊢ ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) = ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) | |
| 11 | 10 | dvnfval | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) → ( 𝑆 D𝑛 𝐹 ) = seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ) |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑆 D𝑛 𝐹 ) = seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ) |
| 13 | 12 | fveq1d | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ‘ ( 𝑁 + 1 ) ) ) |
| 14 | fvex | ⊢ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ V | |
| 15 | oveq2 | ⊢ ( 𝑥 = ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) → ( 𝑆 D 𝑥 ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) ) | |
| 16 | ovex | ⊢ ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) ∈ V | |
| 17 | 15 10 16 | fvmpt | ⊢ ( ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ∈ V → ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ‘ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) ) |
| 18 | 14 17 | ax-mp | ⊢ ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ‘ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) |
| 19 | 12 | fveq1d | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) = ( seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ‘ 𝑁 ) ) |
| 20 | 19 | fveq2d | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ‘ ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) = ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ‘ ( seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ‘ 𝑁 ) ) ) |
| 21 | 18 20 | eqtr3id | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) = ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ‘ ( seq 0 ( ( ( 𝑥 ∈ V ↦ ( 𝑆 D 𝑥 ) ) ∘ 1st ) , ( ℕ0 × { 𝐹 } ) ) ‘ 𝑁 ) ) ) |
| 22 | 9 13 21 | 3eqtr4d | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 𝐹 ) ‘ 𝑁 ) ) ) |