This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cpnfval | ⊢ ( 𝑆 ⊆ ℂ → ( 𝓑C𝑛 ‘ 𝑆 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex | ⊢ ℂ ∈ V | |
| 2 | 1 | elpw2 | ⊢ ( 𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ ) |
| 3 | oveq2 | ⊢ ( 𝑠 = 𝑆 → ( ℂ ↑pm 𝑠 ) = ( ℂ ↑pm 𝑆 ) ) | |
| 4 | oveq1 | ⊢ ( 𝑠 = 𝑆 → ( 𝑠 D𝑛 𝑓 ) = ( 𝑆 D𝑛 𝑓 ) ) | |
| 5 | 4 | fveq1d | ⊢ ( 𝑠 = 𝑆 → ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ) |
| 6 | 5 | eleq1d | ⊢ ( 𝑠 = 𝑆 → ( ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) ↔ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) ) ) |
| 7 | 3 6 | rabeqbidv | ⊢ ( 𝑠 = 𝑆 → { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } = { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) |
| 8 | 7 | mpteq2dv | ⊢ ( 𝑠 = 𝑆 → ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |
| 9 | df-cpn | ⊢ 𝓑C𝑛 = ( 𝑠 ∈ 𝒫 ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) | |
| 10 | nn0ex | ⊢ ℕ0 ∈ V | |
| 11 | 10 | mptex | ⊢ ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ∈ V |
| 12 | 8 9 11 | fvmpt | ⊢ ( 𝑆 ∈ 𝒫 ℂ → ( 𝓑C𝑛 ‘ 𝑆 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |
| 13 | 2 12 | sylbir | ⊢ ( 𝑆 ⊆ ℂ → ( 𝓑C𝑛 ‘ 𝑆 ) = ( 𝑛 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑆 ) ∣ ( ( 𝑆 D𝑛 𝑓 ) ‘ 𝑛 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |