This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a complex differentiable function to the reals. This version of dvres3 assumes that F is differentiable on its domain, but does not require F to be differentiable on the whole real line. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dvres3a.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| Assertion | dvres3a | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) = ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvres3a.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | reldv | ⊢ Rel ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) | |
| 3 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → 𝑆 ⊆ ℂ ) |
| 5 | simplr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 6 | inss2 | ⊢ ( 𝑆 ∩ 𝐴 ) ⊆ 𝐴 | |
| 7 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝑆 ∩ 𝐴 ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝑆 ∩ 𝐴 ) ) : ( 𝑆 ∩ 𝐴 ) ⟶ ℂ ) | |
| 8 | 5 6 7 | sylancl | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → ( 𝐹 ↾ ( 𝑆 ∩ 𝐴 ) ) : ( 𝑆 ∩ 𝐴 ) ⟶ ℂ ) |
| 9 | rescom | ⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑆 ) = ( ( 𝐹 ↾ 𝑆 ) ↾ 𝐴 ) | |
| 10 | resres | ⊢ ( ( 𝐹 ↾ 𝑆 ) ↾ 𝐴 ) = ( 𝐹 ↾ ( 𝑆 ∩ 𝐴 ) ) | |
| 11 | 9 10 | eqtri | ⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑆 ) = ( 𝐹 ↾ ( 𝑆 ∩ 𝐴 ) ) |
| 12 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → 𝐹 Fn 𝐴 ) | |
| 13 | fnresdm | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) | |
| 14 | 5 12 13 | 3syl | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 15 | 14 | reseq1d | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑆 ) = ( 𝐹 ↾ 𝑆 ) ) |
| 16 | 11 15 | eqtr3id | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → ( 𝐹 ↾ ( 𝑆 ∩ 𝐴 ) ) = ( 𝐹 ↾ 𝑆 ) ) |
| 17 | 16 | feq1d | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → ( ( 𝐹 ↾ ( 𝑆 ∩ 𝐴 ) ) : ( 𝑆 ∩ 𝐴 ) ⟶ ℂ ↔ ( 𝐹 ↾ 𝑆 ) : ( 𝑆 ∩ 𝐴 ) ⟶ ℂ ) ) |
| 18 | 8 17 | mpbid | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → ( 𝐹 ↾ 𝑆 ) : ( 𝑆 ∩ 𝐴 ) ⟶ ℂ ) |
| 19 | inss1 | ⊢ ( 𝑆 ∩ 𝐴 ) ⊆ 𝑆 | |
| 20 | 19 | a1i | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → ( 𝑆 ∩ 𝐴 ) ⊆ 𝑆 ) |
| 21 | 4 18 20 | dvbss | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → dom ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ⊆ ( 𝑆 ∩ 𝐴 ) ) |
| 22 | dmres | ⊢ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) = ( 𝑆 ∩ dom ( ℂ D 𝐹 ) ) | |
| 23 | simprr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → dom ( ℂ D 𝐹 ) = 𝐴 ) | |
| 24 | 23 | ineq2d | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → ( 𝑆 ∩ dom ( ℂ D 𝐹 ) ) = ( 𝑆 ∩ 𝐴 ) ) |
| 25 | 22 24 | eqtrid | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) = ( 𝑆 ∩ 𝐴 ) ) |
| 26 | 21 25 | sseqtrrd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → dom ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ⊆ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) |
| 27 | relssres | ⊢ ( ( Rel ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ∧ dom ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ⊆ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) → ( ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ↾ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) = ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) | |
| 28 | 2 26 27 | sylancr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → ( ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ↾ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) = ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) |
| 29 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) : dom ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ⟶ ℂ ) | |
| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) : dom ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ⟶ ℂ ) |
| 31 | 30 | ffund | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → Fun ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) |
| 32 | ssidd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → ℂ ⊆ ℂ ) | |
| 33 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 34 | simprl | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → 𝐴 ∈ 𝐽 ) | |
| 35 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝐴 ∈ 𝐽 ) → 𝐴 ⊆ ℂ ) | |
| 36 | 33 34 35 | sylancr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → 𝐴 ⊆ ℂ ) |
| 37 | dvres2 | ⊢ ( ( ( ℂ ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ ℂ ) ) → ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ⊆ ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) | |
| 38 | 32 5 36 4 37 | syl22anc | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ⊆ ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) |
| 39 | funssres | ⊢ ( ( Fun ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ∧ ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ⊆ ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) → ( ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ↾ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) = ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) | |
| 40 | 31 38 39 | syl2anc | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → ( ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ↾ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) = ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) |
| 41 | 28 40 | eqtr3d | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ∈ 𝐽 ∧ dom ( ℂ D 𝐹 ) = 𝐴 ) ) → ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) = ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) |