This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function on a closed interval with negative derivative is decreasing. (Contributed by Mario Carneiro, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvgt0.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| dvgt0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| dvgt0.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| dvlt0.d | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ( -∞ (,) 0 ) ) | ||
| Assertion | dvlt0 | ⊢ ( 𝜑 → 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvgt0.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | dvgt0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | dvgt0.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 4 | dvlt0.d | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ( -∞ (,) 0 ) ) | |
| 5 | gtso | ⊢ ◡ < Or ℝ | |
| 6 | 1 2 3 4 | dvgt0lem1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( -∞ (,) 0 ) ) |
| 7 | eliooord | ⊢ ( ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∈ ( -∞ (,) 0 ) → ( -∞ < ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∧ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) < 0 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( -∞ < ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) ∧ ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) < 0 ) ) |
| 9 | 8 | simprd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) < 0 ) |
| 10 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 13 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 14 | 12 13 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 15 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 16 | 12 15 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 17 | 14 16 | resubcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 18 | 0red | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 0 ∈ ℝ ) | |
| 19 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 20 | 1 2 19 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 21 | 20 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 22 | 21 13 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℝ ) |
| 23 | 21 15 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℝ ) |
| 24 | 22 23 | resubcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ∈ ℝ ) |
| 25 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 ) | |
| 26 | 23 22 | posdifd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑥 < 𝑦 ↔ 0 < ( 𝑦 − 𝑥 ) ) ) |
| 27 | 25 26 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → 0 < ( 𝑦 − 𝑥 ) ) |
| 28 | ltdivmul | ⊢ ( ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( ( 𝑦 − 𝑥 ) ∈ ℝ ∧ 0 < ( 𝑦 − 𝑥 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) < 0 ↔ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) < ( ( 𝑦 − 𝑥 ) · 0 ) ) ) | |
| 29 | 17 18 24 27 28 | syl112anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑦 − 𝑥 ) ) < 0 ↔ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) < ( ( 𝑦 − 𝑥 ) · 0 ) ) ) |
| 30 | 9 29 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) < ( ( 𝑦 − 𝑥 ) · 0 ) ) |
| 31 | 24 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝑦 − 𝑥 ) ∈ ℂ ) |
| 32 | 31 | mul01d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝑦 − 𝑥 ) · 0 ) = 0 ) |
| 33 | 30 32 | breqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) < 0 ) |
| 34 | 14 16 18 | ltsubaddd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑥 ) ) < 0 ↔ ( 𝐹 ‘ 𝑦 ) < ( 0 + ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 35 | 33 34 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑦 ) < ( 0 + ( 𝐹 ‘ 𝑥 ) ) ) |
| 36 | 16 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 37 | 36 | addlidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 0 + ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 38 | 35 37 | breqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑦 ) < ( 𝐹 ‘ 𝑥 ) ) |
| 39 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 40 | fvex | ⊢ ( 𝐹 ‘ 𝑦 ) ∈ V | |
| 41 | 39 40 | brcnv | ⊢ ( ( 𝐹 ‘ 𝑥 ) ◡ < ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑦 ) < ( 𝐹 ‘ 𝑥 ) ) |
| 42 | 38 41 | sylibr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ◡ < ( 𝐹 ‘ 𝑦 ) ) |
| 43 | 1 2 3 4 5 42 | dvgt0lem2 | ⊢ ( 𝜑 → 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) |