This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function on a closed interval with nonzero derivative is one-to-one. (Contributed by Mario Carneiro, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvne0.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| dvne0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| dvne0.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| dvne0.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | ||
| dvne0.z | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( ℝ D 𝐹 ) ) | ||
| Assertion | dvne0f1 | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvne0.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | dvne0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | dvne0.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 4 | dvne0.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 5 | dvne0.z | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( ℝ D 𝐹 ) ) | |
| 6 | 1 2 3 4 5 | dvne0 | ⊢ ( 𝜑 → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) |
| 7 | isof1o | ⊢ ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1-onto→ ran 𝐹 ) | |
| 8 | isof1o | ⊢ ( 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1-onto→ ran 𝐹 ) | |
| 9 | 7 8 | jaoi | ⊢ ( ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1-onto→ ran 𝐹 ) |
| 10 | f1of1 | ⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1-onto→ ran 𝐹 → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ran 𝐹 ) | |
| 11 | 6 9 10 | 3syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ran 𝐹 ) |
| 12 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 13 | frn | ⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ → ran 𝐹 ⊆ ℝ ) | |
| 14 | 3 12 13 | 3syl | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 15 | f1ss | ⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ran 𝐹 ∧ ran 𝐹 ⊆ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ℝ ) | |
| 16 | 11 14 15 | syl2anc | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) –1-1→ ℝ ) |