This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvid and dvconst . (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvidlem.1 | ⊢ ( 𝜑 → 𝐹 : ℂ ⟶ ℂ ) | |
| dvidlem.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = 𝐵 ) | ||
| dvidlem.3 | ⊢ 𝐵 ∈ ℂ | ||
| Assertion | dvidlem | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( ℂ × { 𝐵 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvidlem.1 | ⊢ ( 𝜑 → 𝐹 : ℂ ⟶ ℂ ) | |
| 2 | dvidlem.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = 𝐵 ) | |
| 3 | dvidlem.3 | ⊢ 𝐵 ∈ ℂ | |
| 4 | dvfcn | ⊢ ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ | |
| 5 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 6 | 5 1 5 | dvbss | ⊢ ( 𝜑 → dom ( ℂ D 𝐹 ) ⊆ ℂ ) |
| 7 | reldv | ⊢ Rel ( ℂ D 𝐹 ) | |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) | |
| 9 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 10 | 9 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 11 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 12 | 11 | ntrtop | ⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) = ℂ ) |
| 13 | 10 12 | ax-mp | ⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) = ℂ |
| 14 | 8 13 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) ) |
| 15 | limcresi | ⊢ ( ( 𝑧 ∈ ℂ ↦ 𝐵 ) limℂ 𝑥 ) ⊆ ( ( ( 𝑧 ∈ ℂ ↦ 𝐵 ) ↾ ( ℂ ∖ { 𝑥 } ) ) limℂ 𝑥 ) | |
| 16 | ssidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ℂ ⊆ ℂ ) | |
| 17 | cncfmptc | ⊢ ( ( 𝐵 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑧 ∈ ℂ ↦ 𝐵 ) ∈ ( ℂ –cn→ ℂ ) ) | |
| 18 | 3 16 16 17 | mp3an2i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑧 ∈ ℂ ↦ 𝐵 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 19 | eqidd | ⊢ ( 𝑧 = 𝑥 → 𝐵 = 𝐵 ) | |
| 20 | 18 8 19 | cnmptlimc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ( ( 𝑧 ∈ ℂ ↦ 𝐵 ) limℂ 𝑥 ) ) |
| 21 | 15 20 | sselid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ( ( ( 𝑧 ∈ ℂ ↦ 𝐵 ) ↾ ( ℂ ∖ { 𝑥 } ) ) limℂ 𝑥 ) ) |
| 22 | eldifsn | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↔ ( 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) | |
| 23 | 2 | 3exp2 | ⊢ ( 𝜑 → ( 𝑥 ∈ ℂ → ( 𝑧 ∈ ℂ → ( 𝑧 ≠ 𝑥 → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = 𝐵 ) ) ) ) |
| 24 | 23 | imp43 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = 𝐵 ) |
| 25 | 22 24 | sylan2b | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) ∧ 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = 𝐵 ) |
| 26 | 25 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ 𝐵 ) ) |
| 27 | difss | ⊢ ( ℂ ∖ { 𝑥 } ) ⊆ ℂ | |
| 28 | resmpt | ⊢ ( ( ℂ ∖ { 𝑥 } ) ⊆ ℂ → ( ( 𝑧 ∈ ℂ ↦ 𝐵 ) ↾ ( ℂ ∖ { 𝑥 } ) ) = ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ 𝐵 ) ) | |
| 29 | 27 28 | ax-mp | ⊢ ( ( 𝑧 ∈ ℂ ↦ 𝐵 ) ↾ ( ℂ ∖ { 𝑥 } ) ) = ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ 𝐵 ) |
| 30 | 26 29 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( ( 𝑧 ∈ ℂ ↦ 𝐵 ) ↾ ( ℂ ∖ { 𝑥 } ) ) ) |
| 31 | 30 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) = ( ( ( 𝑧 ∈ ℂ ↦ 𝐵 ) ↾ ( ℂ ∖ { 𝑥 } ) ) limℂ 𝑥 ) ) |
| 32 | 21 31 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) |
| 33 | 9 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 34 | 33 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 35 | eqid | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) | |
| 36 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐹 : ℂ ⟶ ℂ ) |
| 37 | 34 9 35 16 36 16 | eldv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ( ℂ D 𝐹 ) 𝐵 ↔ ( 𝑥 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) ∧ 𝐵 ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 𝑥 } ) ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) ) |
| 38 | 14 32 37 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ( ℂ D 𝐹 ) 𝐵 ) |
| 39 | releldm | ⊢ ( ( Rel ( ℂ D 𝐹 ) ∧ 𝑥 ( ℂ D 𝐹 ) 𝐵 ) → 𝑥 ∈ dom ( ℂ D 𝐹 ) ) | |
| 40 | 7 38 39 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ dom ( ℂ D 𝐹 ) ) |
| 41 | 6 40 | eqelssd | ⊢ ( 𝜑 → dom ( ℂ D 𝐹 ) = ℂ ) |
| 42 | 41 | feq2d | ⊢ ( 𝜑 → ( ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ ↔ ( ℂ D 𝐹 ) : ℂ ⟶ ℂ ) ) |
| 43 | 4 42 | mpbii | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) : ℂ ⟶ ℂ ) |
| 44 | 43 | ffnd | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) Fn ℂ ) |
| 45 | fnconstg | ⊢ ( 𝐵 ∈ ℂ → ( ℂ × { 𝐵 } ) Fn ℂ ) | |
| 46 | 3 45 | mp1i | ⊢ ( 𝜑 → ( ℂ × { 𝐵 } ) Fn ℂ ) |
| 47 | ffun | ⊢ ( ( ℂ D 𝐹 ) : dom ( ℂ D 𝐹 ) ⟶ ℂ → Fun ( ℂ D 𝐹 ) ) | |
| 48 | 4 47 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → Fun ( ℂ D 𝐹 ) ) |
| 49 | funbrfvb | ⊢ ( ( Fun ( ℂ D 𝐹 ) ∧ 𝑥 ∈ dom ( ℂ D 𝐹 ) ) → ( ( ( ℂ D 𝐹 ) ‘ 𝑥 ) = 𝐵 ↔ 𝑥 ( ℂ D 𝐹 ) 𝐵 ) ) | |
| 50 | 48 40 49 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ( ℂ D 𝐹 ) ‘ 𝑥 ) = 𝐵 ↔ 𝑥 ( ℂ D 𝐹 ) 𝐵 ) ) |
| 51 | 38 50 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ℂ D 𝐹 ) ‘ 𝑥 ) = 𝐵 ) |
| 52 | 3 | a1i | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 53 | fvconst2g | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( ℂ × { 𝐵 } ) ‘ 𝑥 ) = 𝐵 ) | |
| 54 | 52 53 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ℂ × { 𝐵 } ) ‘ 𝑥 ) = 𝐵 ) |
| 55 | 51 54 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ℂ D 𝐹 ) ‘ 𝑥 ) = ( ( ℂ × { 𝐵 } ) ‘ 𝑥 ) ) |
| 56 | 44 46 55 | eqfnfvd | ⊢ ( 𝜑 → ( ℂ D 𝐹 ) = ( ℂ × { 𝐵 } ) ) |