This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvid | ⊢ ( ℂ D ( I ↾ ℂ ) ) = ( ℂ × { 1 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi | ⊢ ( I ↾ ℂ ) : ℂ –1-1-onto→ ℂ | |
| 2 | f1of | ⊢ ( ( I ↾ ℂ ) : ℂ –1-1-onto→ ℂ → ( I ↾ ℂ ) : ℂ ⟶ ℂ ) | |
| 3 | 1 2 | mp1i | ⊢ ( ⊤ → ( I ↾ ℂ ) : ℂ ⟶ ℂ ) |
| 4 | simp2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) → 𝑧 ∈ ℂ ) | |
| 5 | simp1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) → 𝑥 ∈ ℂ ) | |
| 6 | 4 5 | subcld | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) → ( 𝑧 − 𝑥 ) ∈ ℂ ) |
| 7 | simp3 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) → 𝑧 ≠ 𝑥 ) | |
| 8 | 4 5 7 | subne0d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) → ( 𝑧 − 𝑥 ) ≠ 0 ) |
| 9 | fvresi | ⊢ ( 𝑧 ∈ ℂ → ( ( I ↾ ℂ ) ‘ 𝑧 ) = 𝑧 ) | |
| 10 | fvresi | ⊢ ( 𝑥 ∈ ℂ → ( ( I ↾ ℂ ) ‘ 𝑥 ) = 𝑥 ) | |
| 11 | 9 10 | oveqan12rd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( ( I ↾ ℂ ) ‘ 𝑧 ) − ( ( I ↾ ℂ ) ‘ 𝑥 ) ) = ( 𝑧 − 𝑥 ) ) |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) → ( ( ( I ↾ ℂ ) ‘ 𝑧 ) − ( ( I ↾ ℂ ) ‘ 𝑥 ) ) = ( 𝑧 − 𝑥 ) ) |
| 13 | 6 8 12 | diveq1bd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) → ( ( ( ( I ↾ ℂ ) ‘ 𝑧 ) − ( ( I ↾ ℂ ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = 1 ) |
| 14 | 13 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥 ) ) → ( ( ( ( I ↾ ℂ ) ‘ 𝑧 ) − ( ( I ↾ ℂ ) ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) = 1 ) |
| 15 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 16 | 3 14 15 | dvidlem | ⊢ ( ⊤ → ( ℂ D ( I ↾ ℂ ) ) = ( ℂ × { 1 } ) ) |
| 17 | 16 | mptru | ⊢ ( ℂ D ( I ↾ ℂ ) ) = ( ℂ × { 1 } ) |