This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvid and dvconst . (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvidlem.1 | |- ( ph -> F : CC --> CC ) |
|
| dvidlem.2 | |- ( ( ph /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) = B ) |
||
| dvidlem.3 | |- B e. CC |
||
| Assertion | dvidlem | |- ( ph -> ( CC _D F ) = ( CC X. { B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvidlem.1 | |- ( ph -> F : CC --> CC ) |
|
| 2 | dvidlem.2 | |- ( ( ph /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) = B ) |
|
| 3 | dvidlem.3 | |- B e. CC |
|
| 4 | dvfcn | |- ( CC _D F ) : dom ( CC _D F ) --> CC |
|
| 5 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 6 | 5 1 5 | dvbss | |- ( ph -> dom ( CC _D F ) C_ CC ) |
| 7 | reldv | |- Rel ( CC _D F ) |
|
| 8 | simpr | |- ( ( ph /\ x e. CC ) -> x e. CC ) |
|
| 9 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 10 | 9 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 11 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 12 | 11 | ntrtop | |- ( ( TopOpen ` CCfld ) e. Top -> ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC ) |
| 13 | 10 12 | ax-mp | |- ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC |
| 14 | 8 13 | eleqtrrdi | |- ( ( ph /\ x e. CC ) -> x e. ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) ) |
| 15 | limcresi | |- ( ( z e. CC |-> B ) limCC x ) C_ ( ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) limCC x ) |
|
| 16 | ssidd | |- ( ( ph /\ x e. CC ) -> CC C_ CC ) |
|
| 17 | cncfmptc | |- ( ( B e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( z e. CC |-> B ) e. ( CC -cn-> CC ) ) |
|
| 18 | 3 16 16 17 | mp3an2i | |- ( ( ph /\ x e. CC ) -> ( z e. CC |-> B ) e. ( CC -cn-> CC ) ) |
| 19 | eqidd | |- ( z = x -> B = B ) |
|
| 20 | 18 8 19 | cnmptlimc | |- ( ( ph /\ x e. CC ) -> B e. ( ( z e. CC |-> B ) limCC x ) ) |
| 21 | 15 20 | sselid | |- ( ( ph /\ x e. CC ) -> B e. ( ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) limCC x ) ) |
| 22 | eldifsn | |- ( z e. ( CC \ { x } ) <-> ( z e. CC /\ z =/= x ) ) |
|
| 23 | 2 | 3exp2 | |- ( ph -> ( x e. CC -> ( z e. CC -> ( z =/= x -> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) = B ) ) ) ) |
| 24 | 23 | imp43 | |- ( ( ( ph /\ x e. CC ) /\ ( z e. CC /\ z =/= x ) ) -> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) = B ) |
| 25 | 22 24 | sylan2b | |- ( ( ( ph /\ x e. CC ) /\ z e. ( CC \ { x } ) ) -> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) = B ) |
| 26 | 25 | mpteq2dva | |- ( ( ph /\ x e. CC ) -> ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) = ( z e. ( CC \ { x } ) |-> B ) ) |
| 27 | difss | |- ( CC \ { x } ) C_ CC |
|
| 28 | resmpt | |- ( ( CC \ { x } ) C_ CC -> ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) = ( z e. ( CC \ { x } ) |-> B ) ) |
|
| 29 | 27 28 | ax-mp | |- ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) = ( z e. ( CC \ { x } ) |-> B ) |
| 30 | 26 29 | eqtr4di | |- ( ( ph /\ x e. CC ) -> ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) = ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) ) |
| 31 | 30 | oveq1d | |- ( ( ph /\ x e. CC ) -> ( ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) = ( ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) limCC x ) ) |
| 32 | 21 31 | eleqtrrd | |- ( ( ph /\ x e. CC ) -> B e. ( ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) |
| 33 | 9 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 34 | 33 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 35 | eqid | |- ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) = ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
|
| 36 | 1 | adantr | |- ( ( ph /\ x e. CC ) -> F : CC --> CC ) |
| 37 | 34 9 35 16 36 16 | eldv | |- ( ( ph /\ x e. CC ) -> ( x ( CC _D F ) B <-> ( x e. ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) /\ B e. ( ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) ) ) |
| 38 | 14 32 37 | mpbir2and | |- ( ( ph /\ x e. CC ) -> x ( CC _D F ) B ) |
| 39 | releldm | |- ( ( Rel ( CC _D F ) /\ x ( CC _D F ) B ) -> x e. dom ( CC _D F ) ) |
|
| 40 | 7 38 39 | sylancr | |- ( ( ph /\ x e. CC ) -> x e. dom ( CC _D F ) ) |
| 41 | 6 40 | eqelssd | |- ( ph -> dom ( CC _D F ) = CC ) |
| 42 | 41 | feq2d | |- ( ph -> ( ( CC _D F ) : dom ( CC _D F ) --> CC <-> ( CC _D F ) : CC --> CC ) ) |
| 43 | 4 42 | mpbii | |- ( ph -> ( CC _D F ) : CC --> CC ) |
| 44 | 43 | ffnd | |- ( ph -> ( CC _D F ) Fn CC ) |
| 45 | fnconstg | |- ( B e. CC -> ( CC X. { B } ) Fn CC ) |
|
| 46 | 3 45 | mp1i | |- ( ph -> ( CC X. { B } ) Fn CC ) |
| 47 | ffun | |- ( ( CC _D F ) : dom ( CC _D F ) --> CC -> Fun ( CC _D F ) ) |
|
| 48 | 4 47 | mp1i | |- ( ( ph /\ x e. CC ) -> Fun ( CC _D F ) ) |
| 49 | funbrfvb | |- ( ( Fun ( CC _D F ) /\ x e. dom ( CC _D F ) ) -> ( ( ( CC _D F ) ` x ) = B <-> x ( CC _D F ) B ) ) |
|
| 50 | 48 40 49 | syl2anc | |- ( ( ph /\ x e. CC ) -> ( ( ( CC _D F ) ` x ) = B <-> x ( CC _D F ) B ) ) |
| 51 | 38 50 | mpbird | |- ( ( ph /\ x e. CC ) -> ( ( CC _D F ) ` x ) = B ) |
| 52 | 3 | a1i | |- ( ph -> B e. CC ) |
| 53 | fvconst2g | |- ( ( B e. CC /\ x e. CC ) -> ( ( CC X. { B } ) ` x ) = B ) |
|
| 54 | 52 53 | sylan | |- ( ( ph /\ x e. CC ) -> ( ( CC X. { B } ) ` x ) = B ) |
| 55 | 51 54 | eqtr4d | |- ( ( ph /\ x e. CC ) -> ( ( CC _D F ) ` x ) = ( ( CC X. { B } ) ` x ) ) |
| 56 | 44 46 55 | eqfnfvd | |- ( ph -> ( CC _D F ) = ( CC X. { B } ) ) |