This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of the exponential function at 0. The key step in the proof is eftlub , to show that abs ( exp ( x ) - 1 - x ) <_ abs ( x ) ^ 2 x. ( 3 / 4 ) . (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dveflem | ⊢ 0 ( ℂ D exp ) 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | ⊢ 0 ∈ ℂ | |
| 2 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 3 | 2 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 4 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 5 | 4 | ntrtop | ⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) = ℂ ) |
| 6 | 3 5 | ax-mp | ⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) = ℂ |
| 7 | 1 6 | eleqtrri | ⊢ 0 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) |
| 8 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 9 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 10 | ifcl | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+ ) → if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ∈ ℝ+ ) | |
| 11 | 9 10 | mpan2 | ⊢ ( 𝑥 ∈ ℝ+ → if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ∈ ℝ+ ) |
| 12 | eldifsn | ⊢ ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) | |
| 13 | simprl | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → 𝑤 ∈ ℂ ) | |
| 14 | 13 | subid1d | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( 𝑤 − 0 ) = 𝑤 ) |
| 15 | 14 | fveq2d | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( abs ‘ ( 𝑤 − 0 ) ) = ( abs ‘ 𝑤 ) ) |
| 16 | 15 | breq1d | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( ( abs ‘ ( 𝑤 − 0 ) ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ↔ ( abs ‘ 𝑤 ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ) ) |
| 17 | 13 | abscld | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( abs ‘ 𝑤 ) ∈ ℝ ) |
| 18 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 19 | 18 | adantr | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → 𝑥 ∈ ℝ ) |
| 20 | 1red | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → 1 ∈ ℝ ) | |
| 21 | ltmin | ⊢ ( ( ( abs ‘ 𝑤 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ 𝑤 ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ↔ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) ) | |
| 22 | 17 19 20 21 | syl3anc | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( ( abs ‘ 𝑤 ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ↔ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) ) |
| 23 | 16 22 | bitrd | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( ( abs ‘ ( 𝑤 − 0 ) ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ↔ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) ) |
| 24 | simplr | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) | |
| 25 | 24 12 | sylibr | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → 𝑤 ∈ ( ℂ ∖ { 0 } ) ) |
| 26 | fveq2 | ⊢ ( 𝑧 = 𝑤 → ( exp ‘ 𝑧 ) = ( exp ‘ 𝑤 ) ) | |
| 27 | 26 | oveq1d | ⊢ ( 𝑧 = 𝑤 → ( ( exp ‘ 𝑧 ) − 1 ) = ( ( exp ‘ 𝑤 ) − 1 ) ) |
| 28 | id | ⊢ ( 𝑧 = 𝑤 → 𝑧 = 𝑤 ) | |
| 29 | 27 28 | oveq12d | ⊢ ( 𝑧 = 𝑤 → ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) = ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) ) |
| 30 | eqid | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) = ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) | |
| 31 | ovex | ⊢ ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) ∈ V | |
| 32 | 29 30 31 | fvmpt | ⊢ ( 𝑤 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) = ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) ) |
| 33 | 25 32 | syl | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) = ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) ) |
| 34 | 33 | fvoveq1d | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) = ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) |
| 35 | simplrl | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → 𝑤 ∈ ℂ ) | |
| 36 | efcl | ⊢ ( 𝑤 ∈ ℂ → ( exp ‘ 𝑤 ) ∈ ℂ ) | |
| 37 | 35 36 | syl | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( exp ‘ 𝑤 ) ∈ ℂ ) |
| 38 | 1cnd | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → 1 ∈ ℂ ) | |
| 39 | 37 38 | subcld | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( ( exp ‘ 𝑤 ) − 1 ) ∈ ℂ ) |
| 40 | simplrr | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → 𝑤 ≠ 0 ) | |
| 41 | 39 35 40 | divcld | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) ∈ ℂ ) |
| 42 | 41 38 | subcld | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ∈ ℂ ) |
| 43 | 42 | abscld | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ∈ ℝ ) |
| 44 | 35 | abscld | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( abs ‘ 𝑤 ) ∈ ℝ ) |
| 45 | simpll | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → 𝑥 ∈ ℝ+ ) | |
| 46 | 45 | rpred | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → 𝑥 ∈ ℝ ) |
| 47 | abscl | ⊢ ( 𝑤 ∈ ℂ → ( abs ‘ 𝑤 ) ∈ ℝ ) | |
| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ 𝑤 ) ∈ ℝ ) |
| 49 | 36 | ad2antrr | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( exp ‘ 𝑤 ) ∈ ℂ ) |
| 50 | subcl | ⊢ ( ( ( exp ‘ 𝑤 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( exp ‘ 𝑤 ) − 1 ) ∈ ℂ ) | |
| 51 | 49 8 50 | sylancl | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( exp ‘ 𝑤 ) − 1 ) ∈ ℂ ) |
| 52 | simpll | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → 𝑤 ∈ ℂ ) | |
| 53 | simplr | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → 𝑤 ≠ 0 ) | |
| 54 | 51 52 53 | divcld | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) ∈ ℂ ) |
| 55 | 1cnd | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → 1 ∈ ℂ ) | |
| 56 | 54 55 | subcld | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ∈ ℂ ) |
| 57 | 56 | abscld | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ∈ ℝ ) |
| 58 | 48 57 | remulcld | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ 𝑤 ) · ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) ∈ ℝ ) |
| 59 | 48 | resqcld | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ 𝑤 ) ↑ 2 ) ∈ ℝ ) |
| 60 | 3re | ⊢ 3 ∈ ℝ | |
| 61 | 4nn | ⊢ 4 ∈ ℕ | |
| 62 | nndivre | ⊢ ( ( 3 ∈ ℝ ∧ 4 ∈ ℕ ) → ( 3 / 4 ) ∈ ℝ ) | |
| 63 | 60 61 62 | mp2an | ⊢ ( 3 / 4 ) ∈ ℝ |
| 64 | remulcl | ⊢ ( ( ( ( abs ‘ 𝑤 ) ↑ 2 ) ∈ ℝ ∧ ( 3 / 4 ) ∈ ℝ ) → ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( 3 / 4 ) ) ∈ ℝ ) | |
| 65 | 59 63 64 | sylancl | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( 3 / 4 ) ) ∈ ℝ ) |
| 66 | 51 52 | subcld | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( exp ‘ 𝑤 ) − 1 ) − 𝑤 ) ∈ ℂ ) |
| 67 | 66 52 53 | divcan2d | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 𝑤 · ( ( ( ( exp ‘ 𝑤 ) − 1 ) − 𝑤 ) / 𝑤 ) ) = ( ( ( exp ‘ 𝑤 ) − 1 ) − 𝑤 ) ) |
| 68 | 51 52 52 53 | divsubdird | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( ( exp ‘ 𝑤 ) − 1 ) − 𝑤 ) / 𝑤 ) = ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − ( 𝑤 / 𝑤 ) ) ) |
| 69 | 52 53 | dividd | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 𝑤 / 𝑤 ) = 1 ) |
| 70 | 69 | oveq2d | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − ( 𝑤 / 𝑤 ) ) = ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) |
| 71 | 68 70 | eqtrd | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( ( exp ‘ 𝑤 ) − 1 ) − 𝑤 ) / 𝑤 ) = ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) |
| 72 | 71 | oveq2d | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 𝑤 · ( ( ( ( exp ‘ 𝑤 ) − 1 ) − 𝑤 ) / 𝑤 ) ) = ( 𝑤 · ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) |
| 73 | 49 55 52 | subsub4d | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( exp ‘ 𝑤 ) − 1 ) − 𝑤 ) = ( ( exp ‘ 𝑤 ) − ( 1 + 𝑤 ) ) ) |
| 74 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 1 + 𝑤 ) ∈ ℂ ) | |
| 75 | 8 52 74 | sylancr | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 1 + 𝑤 ) ∈ ℂ ) |
| 76 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 77 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 78 | 77 | eftlcl | ⊢ ( ( 𝑤 ∈ ℂ ∧ 2 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 79 | 52 76 78 | sylancl | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 80 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 81 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 82 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 83 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 84 | 0cnd | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → 0 ∈ ℂ ) | |
| 85 | 77 | efval2 | ⊢ ( 𝑤 ∈ ℂ → ( exp ‘ 𝑤 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
| 86 | 85 | ad2antrr | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( exp ‘ 𝑤 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
| 87 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 88 | 87 | sumeq1i | ⊢ Σ 𝑘 ∈ ℕ0 ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) |
| 89 | 86 88 | eqtr2di | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( exp ‘ 𝑤 ) ) |
| 90 | 89 | oveq2d | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 0 + Σ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) = ( 0 + ( exp ‘ 𝑤 ) ) ) |
| 91 | 49 | addlidd | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 0 + ( exp ‘ 𝑤 ) ) = ( exp ‘ 𝑤 ) ) |
| 92 | 90 91 | eqtr2d | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( exp ‘ 𝑤 ) = ( 0 + Σ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 93 | eft0val | ⊢ ( 𝑤 ∈ ℂ → ( ( 𝑤 ↑ 0 ) / ( ! ‘ 0 ) ) = 1 ) | |
| 94 | 93 | ad2antrr | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( 𝑤 ↑ 0 ) / ( ! ‘ 0 ) ) = 1 ) |
| 95 | 94 | oveq2d | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 0 + ( ( 𝑤 ↑ 0 ) / ( ! ‘ 0 ) ) ) = ( 0 + 1 ) ) |
| 96 | 95 82 | eqtr4di | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 0 + ( ( 𝑤 ↑ 0 ) / ( ! ‘ 0 ) ) ) = 1 ) |
| 97 | 77 82 83 52 84 92 96 | efsep | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( exp ‘ 𝑤 ) = ( 1 + Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 98 | exp1 | ⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ↑ 1 ) = 𝑤 ) | |
| 99 | 98 | ad2antrr | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 𝑤 ↑ 1 ) = 𝑤 ) |
| 100 | 99 | oveq1d | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( 𝑤 ↑ 1 ) / ( ! ‘ 1 ) ) = ( 𝑤 / ( ! ‘ 1 ) ) ) |
| 101 | fac1 | ⊢ ( ! ‘ 1 ) = 1 | |
| 102 | 101 | oveq2i | ⊢ ( 𝑤 / ( ! ‘ 1 ) ) = ( 𝑤 / 1 ) |
| 103 | 100 102 | eqtrdi | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( 𝑤 ↑ 1 ) / ( ! ‘ 1 ) ) = ( 𝑤 / 1 ) ) |
| 104 | div1 | ⊢ ( 𝑤 ∈ ℂ → ( 𝑤 / 1 ) = 𝑤 ) | |
| 105 | 104 | ad2antrr | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 𝑤 / 1 ) = 𝑤 ) |
| 106 | 103 105 | eqtrd | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( 𝑤 ↑ 1 ) / ( ! ‘ 1 ) ) = 𝑤 ) |
| 107 | 106 | oveq2d | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 1 + ( ( 𝑤 ↑ 1 ) / ( ! ‘ 1 ) ) ) = ( 1 + 𝑤 ) ) |
| 108 | 77 80 81 52 55 97 107 | efsep | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( exp ‘ 𝑤 ) = ( ( 1 + 𝑤 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 109 | 75 79 108 | mvrladdd | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( exp ‘ 𝑤 ) − ( 1 + 𝑤 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
| 110 | 73 109 | eqtrd | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( exp ‘ 𝑤 ) − 1 ) − 𝑤 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
| 111 | 67 72 110 | 3eqtr3d | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 𝑤 · ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
| 112 | 111 | fveq2d | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ ( 𝑤 · ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 113 | 52 56 | absmuld | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ ( 𝑤 · ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) = ( ( abs ‘ 𝑤 ) · ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) ) |
| 114 | 112 113 | eqtr3d | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) = ( ( abs ‘ 𝑤 ) · ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) ) |
| 115 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝑤 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝑤 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 116 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝑤 ) ↑ 2 ) / ( ! ‘ 2 ) ) · ( ( 1 / ( 2 + 1 ) ) ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝑤 ) ↑ 2 ) / ( ! ‘ 2 ) ) · ( ( 1 / ( 2 + 1 ) ) ↑ 𝑛 ) ) ) | |
| 117 | 2nn | ⊢ 2 ∈ ℕ | |
| 118 | 117 | a1i | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → 2 ∈ ℕ ) |
| 119 | 1red | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → 1 ∈ ℝ ) | |
| 120 | simpr | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ 𝑤 ) < 1 ) | |
| 121 | 48 119 120 | ltled | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ 𝑤 ) ≤ 1 ) |
| 122 | 77 115 116 118 52 121 | eftlub | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ≤ ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( ( 2 + 1 ) / ( ( ! ‘ 2 ) · 2 ) ) ) ) |
| 123 | 114 122 | eqbrtrrd | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ 𝑤 ) · ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) ≤ ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( ( 2 + 1 ) / ( ( ! ‘ 2 ) · 2 ) ) ) ) |
| 124 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 125 | fac2 | ⊢ ( ! ‘ 2 ) = 2 | |
| 126 | 125 | oveq1i | ⊢ ( ( ! ‘ 2 ) · 2 ) = ( 2 · 2 ) |
| 127 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 128 | 126 127 | eqtr2i | ⊢ 4 = ( ( ! ‘ 2 ) · 2 ) |
| 129 | 124 128 | oveq12i | ⊢ ( 3 / 4 ) = ( ( 2 + 1 ) / ( ( ! ‘ 2 ) · 2 ) ) |
| 130 | 129 | oveq2i | ⊢ ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( 3 / 4 ) ) = ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( ( 2 + 1 ) / ( ( ! ‘ 2 ) · 2 ) ) ) |
| 131 | 123 130 | breqtrrdi | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ 𝑤 ) · ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) ≤ ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( 3 / 4 ) ) ) |
| 132 | 63 | a1i | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 3 / 4 ) ∈ ℝ ) |
| 133 | 48 | sqge0d | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → 0 ≤ ( ( abs ‘ 𝑤 ) ↑ 2 ) ) |
| 134 | 1re | ⊢ 1 ∈ ℝ | |
| 135 | 3lt4 | ⊢ 3 < 4 | |
| 136 | 4cn | ⊢ 4 ∈ ℂ | |
| 137 | 136 | mulridi | ⊢ ( 4 · 1 ) = 4 |
| 138 | 135 137 | breqtrri | ⊢ 3 < ( 4 · 1 ) |
| 139 | 4re | ⊢ 4 ∈ ℝ | |
| 140 | 4pos | ⊢ 0 < 4 | |
| 141 | 139 140 | pm3.2i | ⊢ ( 4 ∈ ℝ ∧ 0 < 4 ) |
| 142 | ltdivmul | ⊢ ( ( 3 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 4 ∈ ℝ ∧ 0 < 4 ) ) → ( ( 3 / 4 ) < 1 ↔ 3 < ( 4 · 1 ) ) ) | |
| 143 | 60 134 141 142 | mp3an | ⊢ ( ( 3 / 4 ) < 1 ↔ 3 < ( 4 · 1 ) ) |
| 144 | 138 143 | mpbir | ⊢ ( 3 / 4 ) < 1 |
| 145 | 63 134 144 | ltleii | ⊢ ( 3 / 4 ) ≤ 1 |
| 146 | 145 | a1i | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 3 / 4 ) ≤ 1 ) |
| 147 | 132 119 59 133 146 | lemul2ad | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( 3 / 4 ) ) ≤ ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · 1 ) ) |
| 148 | 48 | recnd | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ 𝑤 ) ∈ ℂ ) |
| 149 | 148 | sqcld | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ 𝑤 ) ↑ 2 ) ∈ ℂ ) |
| 150 | 149 | mulridd | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · 1 ) = ( ( abs ‘ 𝑤 ) ↑ 2 ) ) |
| 151 | 147 150 | breqtrd | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( 3 / 4 ) ) ≤ ( ( abs ‘ 𝑤 ) ↑ 2 ) ) |
| 152 | 58 65 59 131 151 | letrd | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ 𝑤 ) · ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) ≤ ( ( abs ‘ 𝑤 ) ↑ 2 ) ) |
| 153 | 148 | sqvald | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ 𝑤 ) ↑ 2 ) = ( ( abs ‘ 𝑤 ) · ( abs ‘ 𝑤 ) ) ) |
| 154 | 152 153 | breqtrd | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ 𝑤 ) · ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) ≤ ( ( abs ‘ 𝑤 ) · ( abs ‘ 𝑤 ) ) ) |
| 155 | absgt0 | ⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ≠ 0 ↔ 0 < ( abs ‘ 𝑤 ) ) ) | |
| 156 | 155 | ad2antrr | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 𝑤 ≠ 0 ↔ 0 < ( abs ‘ 𝑤 ) ) ) |
| 157 | 53 156 | mpbid | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → 0 < ( abs ‘ 𝑤 ) ) |
| 158 | 48 157 | elrpd | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ 𝑤 ) ∈ ℝ+ ) |
| 159 | 57 48 158 | lemul2d | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ≤ ( abs ‘ 𝑤 ) ↔ ( ( abs ‘ 𝑤 ) · ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) ≤ ( ( abs ‘ 𝑤 ) · ( abs ‘ 𝑤 ) ) ) ) |
| 160 | 154 159 | mpbird | ⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ≤ ( abs ‘ 𝑤 ) ) |
| 161 | 160 | ad2ant2l | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ≤ ( abs ‘ 𝑤 ) ) |
| 162 | simprl | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( abs ‘ 𝑤 ) < 𝑥 ) | |
| 163 | 43 44 46 161 162 | lelttrd | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) < 𝑥 ) |
| 164 | 34 163 | eqbrtrd | ⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) |
| 165 | 164 | ex | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) |
| 166 | 23 165 | sylbid | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( ( abs ‘ ( 𝑤 − 0 ) ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) |
| 167 | 166 | adantld | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) |
| 168 | 12 167 | sylan2b | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑤 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) |
| 169 | 168 | ralrimiva | ⊢ ( 𝑥 ∈ ℝ+ → ∀ 𝑤 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) |
| 170 | brimralrspcev | ⊢ ( ( if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ∈ ℝ+ ∧ ∀ 𝑤 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < 𝑦 ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) | |
| 171 | 11 169 170 | syl2anc | ⊢ ( 𝑥 ∈ ℝ+ → ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < 𝑦 ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) |
| 172 | 171 | rgen | ⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < 𝑦 ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) |
| 173 | eldifi | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → 𝑧 ∈ ℂ ) | |
| 174 | efcl | ⊢ ( 𝑧 ∈ ℂ → ( exp ‘ 𝑧 ) ∈ ℂ ) | |
| 175 | 173 174 | syl | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( exp ‘ 𝑧 ) ∈ ℂ ) |
| 176 | 1cnd | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → 1 ∈ ℂ ) | |
| 177 | 175 176 | subcld | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( exp ‘ 𝑧 ) − 1 ) ∈ ℂ ) |
| 178 | eldifsni | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → 𝑧 ≠ 0 ) | |
| 179 | 177 173 178 | divcld | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ∈ ℂ ) |
| 180 | 30 179 | fmpti | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ |
| 181 | 180 | a1i | ⊢ ( ⊤ → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
| 182 | difssd | ⊢ ( ⊤ → ( ℂ ∖ { 0 } ) ⊆ ℂ ) | |
| 183 | 0cnd | ⊢ ( ⊤ → 0 ∈ ℂ ) | |
| 184 | 181 182 183 | ellimc3 | ⊢ ( ⊤ → ( 1 ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) limℂ 0 ) ↔ ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < 𝑦 ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) ) ) |
| 185 | 184 | mptru | ⊢ ( 1 ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) limℂ 0 ) ↔ ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < 𝑦 ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) ) |
| 186 | 8 172 185 | mpbir2an | ⊢ 1 ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) limℂ 0 ) |
| 187 | 2 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 188 | 187 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 189 | 173 | subid1d | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( 𝑧 − 0 ) = 𝑧 ) |
| 190 | 189 | oveq2d | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( ( exp ‘ 𝑧 ) − ( exp ‘ 0 ) ) / ( 𝑧 − 0 ) ) = ( ( ( exp ‘ 𝑧 ) − ( exp ‘ 0 ) ) / 𝑧 ) ) |
| 191 | ef0 | ⊢ ( exp ‘ 0 ) = 1 | |
| 192 | 191 | oveq2i | ⊢ ( ( exp ‘ 𝑧 ) − ( exp ‘ 0 ) ) = ( ( exp ‘ 𝑧 ) − 1 ) |
| 193 | 192 | oveq1i | ⊢ ( ( ( exp ‘ 𝑧 ) − ( exp ‘ 0 ) ) / 𝑧 ) = ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) |
| 194 | 190 193 | eqtr2di | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) = ( ( ( exp ‘ 𝑧 ) − ( exp ‘ 0 ) ) / ( 𝑧 − 0 ) ) ) |
| 195 | 194 | mpteq2ia | ⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) = ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − ( exp ‘ 0 ) ) / ( 𝑧 − 0 ) ) ) |
| 196 | ssidd | ⊢ ( ⊤ → ℂ ⊆ ℂ ) | |
| 197 | eff | ⊢ exp : ℂ ⟶ ℂ | |
| 198 | 197 | a1i | ⊢ ( ⊤ → exp : ℂ ⟶ ℂ ) |
| 199 | 188 2 195 196 198 196 | eldv | ⊢ ( ⊤ → ( 0 ( ℂ D exp ) 1 ↔ ( 0 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) ∧ 1 ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) limℂ 0 ) ) ) ) |
| 200 | 199 | mptru | ⊢ ( 0 ( ℂ D exp ) 1 ↔ ( 0 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) ∧ 1 ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) limℂ 0 ) ) ) |
| 201 | 7 186 200 | mpbir2an | ⊢ 0 ( ℂ D exp ) 1 |