This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brimralrspcev | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝑌 ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → 𝜓 ) ) → ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝜑 ∧ 𝐴 𝑅 𝑥 ) → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 𝑅 𝑥 ↔ 𝐴 𝑅 𝐵 ) ) | |
| 2 | 1 | anbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝜑 ∧ 𝐴 𝑅 𝑥 ) ↔ ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) ) ) |
| 3 | 2 | rspceaimv | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝑌 ( ( 𝜑 ∧ 𝐴 𝑅 𝐵 ) → 𝜓 ) ) → ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝜑 ∧ 𝐴 𝑅 𝑥 ) → 𝜓 ) ) |