This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of the exponential function at 0. The key step in the proof is eftlub , to show that abs ( exp ( x ) - 1 - x ) <_ abs ( x ) ^ 2 x. ( 3 / 4 ) . (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dveflem | |- 0 ( CC _D exp ) 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | |- 0 e. CC |
|
| 2 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 3 | 2 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 4 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 5 | 4 | ntrtop | |- ( ( TopOpen ` CCfld ) e. Top -> ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC ) |
| 6 | 3 5 | ax-mp | |- ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC |
| 7 | 1 6 | eleqtrri | |- 0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) |
| 8 | ax-1cn | |- 1 e. CC |
|
| 9 | 1rp | |- 1 e. RR+ |
|
| 10 | ifcl | |- ( ( x e. RR+ /\ 1 e. RR+ ) -> if ( x <_ 1 , x , 1 ) e. RR+ ) |
|
| 11 | 9 10 | mpan2 | |- ( x e. RR+ -> if ( x <_ 1 , x , 1 ) e. RR+ ) |
| 12 | eldifsn | |- ( w e. ( CC \ { 0 } ) <-> ( w e. CC /\ w =/= 0 ) ) |
|
| 13 | simprl | |- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> w e. CC ) |
|
| 14 | 13 | subid1d | |- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( w - 0 ) = w ) |
| 15 | 14 | fveq2d | |- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( abs ` ( w - 0 ) ) = ( abs ` w ) ) |
| 16 | 15 | breq1d | |- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) <-> ( abs ` w ) < if ( x <_ 1 , x , 1 ) ) ) |
| 17 | 13 | abscld | |- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( abs ` w ) e. RR ) |
| 18 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 19 | 18 | adantr | |- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> x e. RR ) |
| 20 | 1red | |- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> 1 e. RR ) |
|
| 21 | ltmin | |- ( ( ( abs ` w ) e. RR /\ x e. RR /\ 1 e. RR ) -> ( ( abs ` w ) < if ( x <_ 1 , x , 1 ) <-> ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) ) |
|
| 22 | 17 19 20 21 | syl3anc | |- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( abs ` w ) < if ( x <_ 1 , x , 1 ) <-> ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) ) |
| 23 | 16 22 | bitrd | |- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) <-> ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) ) |
| 24 | simplr | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( w e. CC /\ w =/= 0 ) ) |
|
| 25 | 24 12 | sylibr | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> w e. ( CC \ { 0 } ) ) |
| 26 | fveq2 | |- ( z = w -> ( exp ` z ) = ( exp ` w ) ) |
|
| 27 | 26 | oveq1d | |- ( z = w -> ( ( exp ` z ) - 1 ) = ( ( exp ` w ) - 1 ) ) |
| 28 | id | |- ( z = w -> z = w ) |
|
| 29 | 27 28 | oveq12d | |- ( z = w -> ( ( ( exp ` z ) - 1 ) / z ) = ( ( ( exp ` w ) - 1 ) / w ) ) |
| 30 | eqid | |- ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) = ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) |
|
| 31 | ovex | |- ( ( ( exp ` w ) - 1 ) / w ) e. _V |
|
| 32 | 29 30 31 | fvmpt | |- ( w e. ( CC \ { 0 } ) -> ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) = ( ( ( exp ` w ) - 1 ) / w ) ) |
| 33 | 25 32 | syl | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) = ( ( ( exp ` w ) - 1 ) / w ) ) |
| 34 | 33 | fvoveq1d | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) = ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) |
| 35 | simplrl | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> w e. CC ) |
|
| 36 | efcl | |- ( w e. CC -> ( exp ` w ) e. CC ) |
|
| 37 | 35 36 | syl | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( exp ` w ) e. CC ) |
| 38 | 1cnd | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> 1 e. CC ) |
|
| 39 | 37 38 | subcld | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( ( exp ` w ) - 1 ) e. CC ) |
| 40 | simplrr | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> w =/= 0 ) |
|
| 41 | 39 35 40 | divcld | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( ( ( exp ` w ) - 1 ) / w ) e. CC ) |
| 42 | 41 38 | subcld | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) e. CC ) |
| 43 | 42 | abscld | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) e. RR ) |
| 44 | 35 | abscld | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` w ) e. RR ) |
| 45 | simpll | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> x e. RR+ ) |
|
| 46 | 45 | rpred | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> x e. RR ) |
| 47 | abscl | |- ( w e. CC -> ( abs ` w ) e. RR ) |
|
| 48 | 47 | ad2antrr | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` w ) e. RR ) |
| 49 | 36 | ad2antrr | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( exp ` w ) e. CC ) |
| 50 | subcl | |- ( ( ( exp ` w ) e. CC /\ 1 e. CC ) -> ( ( exp ` w ) - 1 ) e. CC ) |
|
| 51 | 49 8 50 | sylancl | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( exp ` w ) - 1 ) e. CC ) |
| 52 | simpll | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> w e. CC ) |
|
| 53 | simplr | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> w =/= 0 ) |
|
| 54 | 51 52 53 | divcld | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( exp ` w ) - 1 ) / w ) e. CC ) |
| 55 | 1cnd | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 1 e. CC ) |
|
| 56 | 54 55 | subcld | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) e. CC ) |
| 57 | 56 | abscld | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) e. RR ) |
| 58 | 48 57 | remulcld | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) e. RR ) |
| 59 | 48 | resqcld | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) ^ 2 ) e. RR ) |
| 60 | 3re | |- 3 e. RR |
|
| 61 | 4nn | |- 4 e. NN |
|
| 62 | nndivre | |- ( ( 3 e. RR /\ 4 e. NN ) -> ( 3 / 4 ) e. RR ) |
|
| 63 | 60 61 62 | mp2an | |- ( 3 / 4 ) e. RR |
| 64 | remulcl | |- ( ( ( ( abs ` w ) ^ 2 ) e. RR /\ ( 3 / 4 ) e. RR ) -> ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) e. RR ) |
|
| 65 | 59 63 64 | sylancl | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) e. RR ) |
| 66 | 51 52 | subcld | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( exp ` w ) - 1 ) - w ) e. CC ) |
| 67 | 66 52 53 | divcan2d | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w x. ( ( ( ( exp ` w ) - 1 ) - w ) / w ) ) = ( ( ( exp ` w ) - 1 ) - w ) ) |
| 68 | 51 52 52 53 | divsubdird | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( ( exp ` w ) - 1 ) - w ) / w ) = ( ( ( ( exp ` w ) - 1 ) / w ) - ( w / w ) ) ) |
| 69 | 52 53 | dividd | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w / w ) = 1 ) |
| 70 | 69 | oveq2d | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( ( exp ` w ) - 1 ) / w ) - ( w / w ) ) = ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) |
| 71 | 68 70 | eqtrd | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( ( exp ` w ) - 1 ) - w ) / w ) = ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) |
| 72 | 71 | oveq2d | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w x. ( ( ( ( exp ` w ) - 1 ) - w ) / w ) ) = ( w x. ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) |
| 73 | 49 55 52 | subsub4d | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( exp ` w ) - 1 ) - w ) = ( ( exp ` w ) - ( 1 + w ) ) ) |
| 74 | addcl | |- ( ( 1 e. CC /\ w e. CC ) -> ( 1 + w ) e. CC ) |
|
| 75 | 8 52 74 | sylancr | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 1 + w ) e. CC ) |
| 76 | 2nn0 | |- 2 e. NN0 |
|
| 77 | eqid | |- ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) |
|
| 78 | 77 | eftlcl | |- ( ( w e. CC /\ 2 e. NN0 ) -> sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
| 79 | 52 76 78 | sylancl | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
| 80 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 81 | 1nn0 | |- 1 e. NN0 |
|
| 82 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 83 | 0nn0 | |- 0 e. NN0 |
|
| 84 | 0cnd | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 0 e. CC ) |
|
| 85 | 77 | efval2 | |- ( w e. CC -> ( exp ` w ) = sum_ k e. NN0 ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) |
| 86 | 85 | ad2antrr | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( exp ` w ) = sum_ k e. NN0 ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) |
| 87 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 88 | 87 | sumeq1i | |- sum_ k e. NN0 ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) = sum_ k e. ( ZZ>= ` 0 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) |
| 89 | 86 88 | eqtr2di | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> sum_ k e. ( ZZ>= ` 0 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) = ( exp ` w ) ) |
| 90 | 89 | oveq2d | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 0 + sum_ k e. ( ZZ>= ` 0 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( 0 + ( exp ` w ) ) ) |
| 91 | 49 | addlidd | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 0 + ( exp ` w ) ) = ( exp ` w ) ) |
| 92 | 90 91 | eqtr2d | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( exp ` w ) = ( 0 + sum_ k e. ( ZZ>= ` 0 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
| 93 | eft0val | |- ( w e. CC -> ( ( w ^ 0 ) / ( ! ` 0 ) ) = 1 ) |
|
| 94 | 93 | ad2antrr | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( w ^ 0 ) / ( ! ` 0 ) ) = 1 ) |
| 95 | 94 | oveq2d | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 0 + ( ( w ^ 0 ) / ( ! ` 0 ) ) ) = ( 0 + 1 ) ) |
| 96 | 95 82 | eqtr4di | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 0 + ( ( w ^ 0 ) / ( ! ` 0 ) ) ) = 1 ) |
| 97 | 77 82 83 52 84 92 96 | efsep | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( exp ` w ) = ( 1 + sum_ k e. ( ZZ>= ` 1 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
| 98 | exp1 | |- ( w e. CC -> ( w ^ 1 ) = w ) |
|
| 99 | 98 | ad2antrr | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w ^ 1 ) = w ) |
| 100 | 99 | oveq1d | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( w ^ 1 ) / ( ! ` 1 ) ) = ( w / ( ! ` 1 ) ) ) |
| 101 | fac1 | |- ( ! ` 1 ) = 1 |
|
| 102 | 101 | oveq2i | |- ( w / ( ! ` 1 ) ) = ( w / 1 ) |
| 103 | 100 102 | eqtrdi | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( w ^ 1 ) / ( ! ` 1 ) ) = ( w / 1 ) ) |
| 104 | div1 | |- ( w e. CC -> ( w / 1 ) = w ) |
|
| 105 | 104 | ad2antrr | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w / 1 ) = w ) |
| 106 | 103 105 | eqtrd | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( w ^ 1 ) / ( ! ` 1 ) ) = w ) |
| 107 | 106 | oveq2d | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 1 + ( ( w ^ 1 ) / ( ! ` 1 ) ) ) = ( 1 + w ) ) |
| 108 | 77 80 81 52 55 97 107 | efsep | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( exp ` w ) = ( ( 1 + w ) + sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
| 109 | 75 79 108 | mvrladdd | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( exp ` w ) - ( 1 + w ) ) = sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) |
| 110 | 73 109 | eqtrd | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( exp ` w ) - 1 ) - w ) = sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) |
| 111 | 67 72 110 | 3eqtr3d | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w x. ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) = sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) |
| 112 | 111 | fveq2d | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` ( w x. ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) = ( abs ` sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
| 113 | 52 56 | absmuld | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` ( w x. ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) = ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) ) |
| 114 | 112 113 | eqtr3d | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) ) |
| 115 | eqid | |- ( n e. NN0 |-> ( ( ( abs ` w ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( abs ` w ) ^ n ) / ( ! ` n ) ) ) |
|
| 116 | eqid | |- ( n e. NN0 |-> ( ( ( ( abs ` w ) ^ 2 ) / ( ! ` 2 ) ) x. ( ( 1 / ( 2 + 1 ) ) ^ n ) ) ) = ( n e. NN0 |-> ( ( ( ( abs ` w ) ^ 2 ) / ( ! ` 2 ) ) x. ( ( 1 / ( 2 + 1 ) ) ^ n ) ) ) |
|
| 117 | 2nn | |- 2 e. NN |
|
| 118 | 117 | a1i | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 2 e. NN ) |
| 119 | 1red | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 1 e. RR ) |
|
| 120 | simpr | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` w ) < 1 ) |
|
| 121 | 48 119 120 | ltled | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` w ) <_ 1 ) |
| 122 | 77 115 116 118 52 121 | eftlub | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) <_ ( ( ( abs ` w ) ^ 2 ) x. ( ( 2 + 1 ) / ( ( ! ` 2 ) x. 2 ) ) ) ) |
| 123 | 114 122 | eqbrtrrd | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) <_ ( ( ( abs ` w ) ^ 2 ) x. ( ( 2 + 1 ) / ( ( ! ` 2 ) x. 2 ) ) ) ) |
| 124 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 125 | fac2 | |- ( ! ` 2 ) = 2 |
|
| 126 | 125 | oveq1i | |- ( ( ! ` 2 ) x. 2 ) = ( 2 x. 2 ) |
| 127 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 128 | 126 127 | eqtr2i | |- 4 = ( ( ! ` 2 ) x. 2 ) |
| 129 | 124 128 | oveq12i | |- ( 3 / 4 ) = ( ( 2 + 1 ) / ( ( ! ` 2 ) x. 2 ) ) |
| 130 | 129 | oveq2i | |- ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) = ( ( ( abs ` w ) ^ 2 ) x. ( ( 2 + 1 ) / ( ( ! ` 2 ) x. 2 ) ) ) |
| 131 | 123 130 | breqtrrdi | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) <_ ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) ) |
| 132 | 63 | a1i | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 3 / 4 ) e. RR ) |
| 133 | 48 | sqge0d | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 0 <_ ( ( abs ` w ) ^ 2 ) ) |
| 134 | 1re | |- 1 e. RR |
|
| 135 | 3lt4 | |- 3 < 4 |
|
| 136 | 4cn | |- 4 e. CC |
|
| 137 | 136 | mulridi | |- ( 4 x. 1 ) = 4 |
| 138 | 135 137 | breqtrri | |- 3 < ( 4 x. 1 ) |
| 139 | 4re | |- 4 e. RR |
|
| 140 | 4pos | |- 0 < 4 |
|
| 141 | 139 140 | pm3.2i | |- ( 4 e. RR /\ 0 < 4 ) |
| 142 | ltdivmul | |- ( ( 3 e. RR /\ 1 e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( 3 / 4 ) < 1 <-> 3 < ( 4 x. 1 ) ) ) |
|
| 143 | 60 134 141 142 | mp3an | |- ( ( 3 / 4 ) < 1 <-> 3 < ( 4 x. 1 ) ) |
| 144 | 138 143 | mpbir | |- ( 3 / 4 ) < 1 |
| 145 | 63 134 144 | ltleii | |- ( 3 / 4 ) <_ 1 |
| 146 | 145 | a1i | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 3 / 4 ) <_ 1 ) |
| 147 | 132 119 59 133 146 | lemul2ad | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) <_ ( ( ( abs ` w ) ^ 2 ) x. 1 ) ) |
| 148 | 48 | recnd | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` w ) e. CC ) |
| 149 | 148 | sqcld | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) ^ 2 ) e. CC ) |
| 150 | 149 | mulridd | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( abs ` w ) ^ 2 ) x. 1 ) = ( ( abs ` w ) ^ 2 ) ) |
| 151 | 147 150 | breqtrd | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) <_ ( ( abs ` w ) ^ 2 ) ) |
| 152 | 58 65 59 131 151 | letrd | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) <_ ( ( abs ` w ) ^ 2 ) ) |
| 153 | 148 | sqvald | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) ^ 2 ) = ( ( abs ` w ) x. ( abs ` w ) ) ) |
| 154 | 152 153 | breqtrd | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) <_ ( ( abs ` w ) x. ( abs ` w ) ) ) |
| 155 | absgt0 | |- ( w e. CC -> ( w =/= 0 <-> 0 < ( abs ` w ) ) ) |
|
| 156 | 155 | ad2antrr | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w =/= 0 <-> 0 < ( abs ` w ) ) ) |
| 157 | 53 156 | mpbid | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 0 < ( abs ` w ) ) |
| 158 | 48 157 | elrpd | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` w ) e. RR+ ) |
| 159 | 57 48 158 | lemul2d | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) <_ ( abs ` w ) <-> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) <_ ( ( abs ` w ) x. ( abs ` w ) ) ) ) |
| 160 | 154 159 | mpbird | |- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) <_ ( abs ` w ) ) |
| 161 | 160 | ad2ant2l | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) <_ ( abs ` w ) ) |
| 162 | simprl | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` w ) < x ) |
|
| 163 | 43 44 46 161 162 | lelttrd | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) < x ) |
| 164 | 34 163 | eqbrtrd | |- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) |
| 165 | 164 | ex | |- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) |
| 166 | 23 165 | sylbid | |- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) |
| 167 | 166 | adantld | |- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) |
| 168 | 12 167 | sylan2b | |- ( ( x e. RR+ /\ w e. ( CC \ { 0 } ) ) -> ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) |
| 169 | 168 | ralrimiva | |- ( x e. RR+ -> A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) |
| 170 | brimralrspcev | |- ( ( if ( x <_ 1 , x , 1 ) e. RR+ /\ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) -> E. y e. RR+ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < y ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) |
|
| 171 | 11 169 170 | syl2anc | |- ( x e. RR+ -> E. y e. RR+ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < y ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) |
| 172 | 171 | rgen | |- A. x e. RR+ E. y e. RR+ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < y ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) |
| 173 | eldifi | |- ( z e. ( CC \ { 0 } ) -> z e. CC ) |
|
| 174 | efcl | |- ( z e. CC -> ( exp ` z ) e. CC ) |
|
| 175 | 173 174 | syl | |- ( z e. ( CC \ { 0 } ) -> ( exp ` z ) e. CC ) |
| 176 | 1cnd | |- ( z e. ( CC \ { 0 } ) -> 1 e. CC ) |
|
| 177 | 175 176 | subcld | |- ( z e. ( CC \ { 0 } ) -> ( ( exp ` z ) - 1 ) e. CC ) |
| 178 | eldifsni | |- ( z e. ( CC \ { 0 } ) -> z =/= 0 ) |
|
| 179 | 177 173 178 | divcld | |- ( z e. ( CC \ { 0 } ) -> ( ( ( exp ` z ) - 1 ) / z ) e. CC ) |
| 180 | 30 179 | fmpti | |- ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) : ( CC \ { 0 } ) --> CC |
| 181 | 180 | a1i | |- ( T. -> ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) : ( CC \ { 0 } ) --> CC ) |
| 182 | difssd | |- ( T. -> ( CC \ { 0 } ) C_ CC ) |
|
| 183 | 0cnd | |- ( T. -> 0 e. CC ) |
|
| 184 | 181 182 183 | ellimc3 | |- ( T. -> ( 1 e. ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) limCC 0 ) <-> ( 1 e. CC /\ A. x e. RR+ E. y e. RR+ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < y ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) ) ) |
| 185 | 184 | mptru | |- ( 1 e. ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) limCC 0 ) <-> ( 1 e. CC /\ A. x e. RR+ E. y e. RR+ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < y ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) ) |
| 186 | 8 172 185 | mpbir2an | |- 1 e. ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) limCC 0 ) |
| 187 | 2 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 188 | 187 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 189 | 173 | subid1d | |- ( z e. ( CC \ { 0 } ) -> ( z - 0 ) = z ) |
| 190 | 189 | oveq2d | |- ( z e. ( CC \ { 0 } ) -> ( ( ( exp ` z ) - ( exp ` 0 ) ) / ( z - 0 ) ) = ( ( ( exp ` z ) - ( exp ` 0 ) ) / z ) ) |
| 191 | ef0 | |- ( exp ` 0 ) = 1 |
|
| 192 | 191 | oveq2i | |- ( ( exp ` z ) - ( exp ` 0 ) ) = ( ( exp ` z ) - 1 ) |
| 193 | 192 | oveq1i | |- ( ( ( exp ` z ) - ( exp ` 0 ) ) / z ) = ( ( ( exp ` z ) - 1 ) / z ) |
| 194 | 190 193 | eqtr2di | |- ( z e. ( CC \ { 0 } ) -> ( ( ( exp ` z ) - 1 ) / z ) = ( ( ( exp ` z ) - ( exp ` 0 ) ) / ( z - 0 ) ) ) |
| 195 | 194 | mpteq2ia | |- ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) = ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - ( exp ` 0 ) ) / ( z - 0 ) ) ) |
| 196 | ssidd | |- ( T. -> CC C_ CC ) |
|
| 197 | eff | |- exp : CC --> CC |
|
| 198 | 197 | a1i | |- ( T. -> exp : CC --> CC ) |
| 199 | 188 2 195 196 198 196 | eldv | |- ( T. -> ( 0 ( CC _D exp ) 1 <-> ( 0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) /\ 1 e. ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) limCC 0 ) ) ) ) |
| 200 | 199 | mptru | |- ( 0 ( CC _D exp ) 1 <-> ( 0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) /\ 1 e. ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) limCC 0 ) ) ) |
| 201 | 7 186 200 | mpbir2an | |- 0 ( CC _D exp ) 1 |