This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj . (This doesn't follow from dvcobr because * is not a function on the reals, and even if we used complex derivatives, * is not complex-differentiable.) (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcj.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| dvcj.x | ⊢ ( 𝜑 → 𝑋 ⊆ ℝ ) | ||
| dvcj.c | ⊢ ( 𝜑 → 𝐶 ∈ dom ( ℝ D 𝐹 ) ) | ||
| Assertion | dvcjbr | ⊢ ( 𝜑 → 𝐶 ( ℝ D ( ∗ ∘ 𝐹 ) ) ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcj.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 2 | dvcj.x | ⊢ ( 𝜑 → 𝑋 ⊆ ℝ ) | |
| 3 | dvcj.c | ⊢ ( 𝜑 → 𝐶 ∈ dom ( ℝ D 𝐹 ) ) | |
| 4 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 6 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 7 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 8 | 5 1 2 6 7 | dvbssntr | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) ) |
| 9 | 8 3 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) ) |
| 10 | 2 4 | sstrdi | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
| 11 | 4 | a1i | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ℝ ⊆ ℂ ) |
| 12 | simpl | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 13 | simpr | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → 𝑋 ⊆ ℝ ) | |
| 14 | 11 12 13 | dvbss | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → dom ( ℝ D 𝐹 ) ⊆ 𝑋 ) |
| 15 | 1 2 14 | syl2anc | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) ⊆ 𝑋 ) |
| 16 | 15 3 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
| 17 | 1 10 16 | dvlem | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ∈ ℂ ) |
| 18 | 17 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) : ( 𝑋 ∖ { 𝐶 } ) ⟶ ℂ ) |
| 19 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 20 | 7 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 21 | 20 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 22 | dvf | ⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ | |
| 23 | ffun | ⊢ ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ → Fun ( ℝ D 𝐹 ) ) | |
| 24 | funfvbrb | ⊢ ( Fun ( ℝ D 𝐹 ) → ( 𝐶 ∈ dom ( ℝ D 𝐹 ) ↔ 𝐶 ( ℝ D 𝐹 ) ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ) | |
| 25 | 22 23 24 | mp2b | ⊢ ( 𝐶 ∈ dom ( ℝ D 𝐹 ) ↔ 𝐶 ( ℝ D 𝐹 ) ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) |
| 26 | 3 25 | sylib | ⊢ ( 𝜑 → 𝐶 ( ℝ D 𝐹 ) ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) |
| 27 | eqid | ⊢ ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) = ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) | |
| 28 | 6 7 27 5 1 2 | eldv | ⊢ ( 𝜑 → ( 𝐶 ( ℝ D 𝐹 ) ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ↔ ( 𝐶 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ∈ ( ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
| 29 | 26 28 | mpbid | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ∈ ( ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) |
| 30 | 29 | simprd | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ∈ ( ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 31 | cjcncf | ⊢ ∗ ∈ ( ℂ –cn→ ℂ ) | |
| 32 | 7 | cncfcn1 | ⊢ ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 33 | 31 32 | eleqtri | ⊢ ∗ ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 34 | 22 | ffvelcdmi | ⊢ ( 𝐶 ∈ dom ( ℝ D 𝐹 ) → ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ∈ ℂ ) |
| 35 | 3 34 | syl | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ∈ ℂ ) |
| 36 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 37 | 36 | cncnpi | ⊢ ( ( ∗ ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ∈ ℂ ) → ∗ ∈ ( ( ( TopOpen ‘ ℂfld ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ) |
| 38 | 33 35 37 | sylancr | ⊢ ( 𝜑 → ∗ ∈ ( ( ( TopOpen ‘ ℂfld ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ) |
| 39 | 18 19 7 21 30 38 | limccnp | ⊢ ( 𝜑 → ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ∈ ( ( ∗ ∘ ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) ) limℂ 𝐶 ) ) |
| 40 | cjf | ⊢ ∗ : ℂ ⟶ ℂ | |
| 41 | 40 | a1i | ⊢ ( 𝜑 → ∗ : ℂ ⟶ ℂ ) |
| 42 | 41 17 | cofmpt | ⊢ ( 𝜑 → ( ∗ ∘ ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) ) = ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ∗ ‘ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) ) ) |
| 43 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝐹 : 𝑋 ⟶ ℂ ) |
| 44 | eldifi | ⊢ ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) → 𝑥 ∈ 𝑋 ) | |
| 45 | 44 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝑥 ∈ 𝑋 ) |
| 46 | 43 45 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 47 | 1 16 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) |
| 49 | 46 48 | subcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) ∈ ℂ ) |
| 50 | 2 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ℝ ) |
| 51 | 44 50 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝑥 ∈ ℝ ) |
| 52 | 2 16 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 53 | 52 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝐶 ∈ ℝ ) |
| 54 | 51 53 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝑥 − 𝐶 ) ∈ ℝ ) |
| 55 | 54 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝑥 − 𝐶 ) ∈ ℂ ) |
| 56 | 51 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝑥 ∈ ℂ ) |
| 57 | 53 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝐶 ∈ ℂ ) |
| 58 | eldifsni | ⊢ ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) → 𝑥 ≠ 𝐶 ) | |
| 59 | 58 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → 𝑥 ≠ 𝐶 ) |
| 60 | 56 57 59 | subne0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( 𝑥 − 𝐶 ) ≠ 0 ) |
| 61 | 49 55 60 | cjdivd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ∗ ‘ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) = ( ( ∗ ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) ) / ( ∗ ‘ ( 𝑥 − 𝐶 ) ) ) ) |
| 62 | cjsub | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝐶 ) ∈ ℂ ) → ( ∗ ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) − ( ∗ ‘ ( 𝐹 ‘ 𝐶 ) ) ) ) | |
| 63 | 46 48 62 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ∗ ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) − ( ∗ ‘ ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 64 | fvco3 | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) = ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 65 | 1 44 64 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) = ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 66 | fvco3 | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝐶 ∈ 𝑋 ) → ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) = ( ∗ ‘ ( 𝐹 ‘ 𝐶 ) ) ) | |
| 67 | 1 16 66 | syl2anc | ⊢ ( 𝜑 → ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) = ( ∗ ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
| 68 | 67 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) = ( ∗ ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
| 69 | 65 68 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) = ( ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) − ( ∗ ‘ ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 70 | 63 69 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ∗ ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) ) |
| 71 | 54 | cjred | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ∗ ‘ ( 𝑥 − 𝐶 ) ) = ( 𝑥 − 𝐶 ) ) |
| 72 | 70 71 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ( ∗ ‘ ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) ) / ( ∗ ‘ ( 𝑥 − 𝐶 ) ) ) = ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) |
| 73 | 61 72 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ) → ( ∗ ‘ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) = ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) |
| 74 | 73 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ∗ ‘ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) ) = ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) ) |
| 75 | 42 74 | eqtrd | ⊢ ( 𝜑 → ( ∗ ∘ ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) ) = ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) ) |
| 76 | 75 | oveq1d | ⊢ ( 𝜑 → ( ( ∗ ∘ ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( 𝐹 ‘ 𝑥 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) ) limℂ 𝐶 ) = ( ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 77 | 39 76 | eleqtrd | ⊢ ( 𝜑 → ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ∈ ( ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) limℂ 𝐶 ) ) |
| 78 | eqid | ⊢ ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) = ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) | |
| 79 | fco | ⊢ ( ( ∗ : ℂ ⟶ ℂ ∧ 𝐹 : 𝑋 ⟶ ℂ ) → ( ∗ ∘ 𝐹 ) : 𝑋 ⟶ ℂ ) | |
| 80 | 40 1 79 | sylancr | ⊢ ( 𝜑 → ( ∗ ∘ 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 81 | 6 7 78 5 80 2 | eldv | ⊢ ( 𝜑 → ( 𝐶 ( ℝ D ( ∗ ∘ 𝐹 ) ) ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ↔ ( 𝐶 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) ∧ ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ∈ ( ( 𝑥 ∈ ( 𝑋 ∖ { 𝐶 } ) ↦ ( ( ( ( ∗ ∘ 𝐹 ) ‘ 𝑥 ) − ( ( ∗ ∘ 𝐹 ) ‘ 𝐶 ) ) / ( 𝑥 − 𝐶 ) ) ) limℂ 𝐶 ) ) ) ) |
| 82 | 9 77 81 | mpbir2and | ⊢ ( 𝜑 → 𝐶 ( ℝ D ( ∗ ∘ 𝐹 ) ) ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝐶 ) ) ) |