This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex conjugate is continuous. (Contributed by Paul Chapman, 21-Oct-2007) (Revised by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjcncf | ⊢ ∗ ∈ ( ℂ –cn→ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjf | ⊢ ∗ : ℂ ⟶ ℂ | |
| 2 | cjcn2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℂ ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ∗ ‘ 𝑤 ) − ( ∗ ‘ 𝑥 ) ) ) < 𝑦 ) ) | |
| 3 | 2 | rgen2 | ⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℂ ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ∗ ‘ 𝑤 ) − ( ∗ ‘ 𝑥 ) ) ) < 𝑦 ) |
| 4 | ssid | ⊢ ℂ ⊆ ℂ | |
| 5 | elcncf2 | ⊢ ( ( ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ∗ ∈ ( ℂ –cn→ ℂ ) ↔ ( ∗ : ℂ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℂ ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ∗ ‘ 𝑤 ) − ( ∗ ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) | |
| 6 | 4 4 5 | mp2an | ⊢ ( ∗ ∈ ( ℂ –cn→ ℂ ) ↔ ( ∗ : ℂ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑤 ∈ ℂ ( ( abs ‘ ( 𝑤 − 𝑥 ) ) < 𝑧 → ( abs ‘ ( ( ∗ ‘ 𝑤 ) − ( ∗ ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 7 | 1 3 6 | mpbir2an | ⊢ ∗ ∈ ( ℂ –cn→ ℂ ) |