This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr . (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvcj | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ 𝐹 ) ) = ( ∗ ∘ ( ℝ D 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvf | ⊢ ( ℝ D ( ∗ ∘ 𝐹 ) ) : dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ⟶ ℂ | |
| 2 | ffun | ⊢ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) : dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ⟶ ℂ → Fun ( ℝ D ( ∗ ∘ 𝐹 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ Fun ( ℝ D ( ∗ ∘ 𝐹 ) ) |
| 4 | simpll | ⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 5 | simplr | ⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝑋 ⊆ ℝ ) | |
| 6 | simpr | ⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝑥 ∈ dom ( ℝ D 𝐹 ) ) | |
| 7 | 4 5 6 | dvcjbr | ⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝑥 ( ℝ D ( ∗ ∘ 𝐹 ) ) ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 8 | funbrfv | ⊢ ( Fun ( ℝ D ( ∗ ∘ 𝐹 ) ) → ( 𝑥 ( ℝ D ( ∗ ∘ 𝐹 ) ) ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) → ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) = ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) | |
| 9 | 3 7 8 | mpsyl | ⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) = ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 10 | 9 | mpteq2dva | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↦ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↦ ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 11 | cjf | ⊢ ∗ : ℂ ⟶ ℂ | |
| 12 | fco | ⊢ ( ( ∗ : ℂ ⟶ ℂ ∧ 𝐹 : 𝑋 ⟶ ℂ ) → ( ∗ ∘ 𝐹 ) : 𝑋 ⟶ ℂ ) | |
| 13 | 11 12 | mpan | ⊢ ( 𝐹 : 𝑋 ⟶ ℂ → ( ∗ ∘ 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) → ( ∗ ∘ 𝐹 ) : 𝑋 ⟶ ℂ ) |
| 15 | simplr | ⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) → 𝑋 ⊆ ℝ ) | |
| 16 | simpr | ⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) | |
| 17 | 14 15 16 | dvcjbr | ⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) → 𝑥 ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ( ∗ ‘ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) ) ) |
| 18 | vex | ⊢ 𝑥 ∈ V | |
| 19 | fvex | ⊢ ( ∗ ‘ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) ) ∈ V | |
| 20 | 18 19 | breldm | ⊢ ( 𝑥 ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ( ∗ ‘ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ) |
| 21 | 17 20 | syl | ⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ) |
| 22 | 21 | ex | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ) ) |
| 23 | 22 | ssrdv | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ⊆ dom ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) ) |
| 24 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) | |
| 25 | 24 | adantlr | ⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 26 | 25 | cjcjd | ⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∗ ‘ ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 27 | 26 | mpteq2dva | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 28 | 25 | cjcld | ⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 29 | simpl | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 30 | 29 | feqmptd | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 31 | 11 | a1i | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ∗ : ℂ ⟶ ℂ ) |
| 32 | 31 | feqmptd | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ∗ = ( 𝑦 ∈ ℂ ↦ ( ∗ ‘ 𝑦 ) ) ) |
| 33 | fveq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 34 | 25 30 32 33 | fmptco | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ∗ ∘ 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 35 | fveq2 | ⊢ ( 𝑦 = ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 36 | 28 34 32 35 | fmptco | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ∗ ‘ ( ∗ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 37 | 27 36 30 | 3eqtr4d | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) = 𝐹 ) |
| 38 | 37 | oveq2d | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) = ( ℝ D 𝐹 ) ) |
| 39 | 38 | dmeqd | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → dom ( ℝ D ( ∗ ∘ ( ∗ ∘ 𝐹 ) ) ) = dom ( ℝ D 𝐹 ) ) |
| 40 | 23 39 | sseqtrd | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 41 | fvex | ⊢ ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ V | |
| 42 | 18 41 | breldm | ⊢ ( 𝑥 ( ℝ D ( ∗ ∘ 𝐹 ) ) ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) |
| 43 | 7 42 | syl | ⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝑥 ∈ dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ) |
| 44 | 40 43 | eqelssd | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → dom ( ℝ D ( ∗ ∘ 𝐹 ) ) = dom ( ℝ D 𝐹 ) ) |
| 45 | 44 | feq2d | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ( ℝ D ( ∗ ∘ 𝐹 ) ) : dom ( ℝ D ( ∗ ∘ 𝐹 ) ) ⟶ ℂ ↔ ( ℝ D ( ∗ ∘ 𝐹 ) ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ) ) |
| 46 | 1 45 | mpbii | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ 𝐹 ) ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ) |
| 47 | 46 | feqmptd | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ 𝐹 ) ) = ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↦ ( ( ℝ D ( ∗ ∘ 𝐹 ) ) ‘ 𝑥 ) ) ) |
| 48 | dvf | ⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ | |
| 49 | 48 | ffvelcdmi | ⊢ ( 𝑥 ∈ dom ( ℝ D 𝐹 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 50 | 49 | adantl | ⊢ ( ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 51 | 48 | a1i | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ) |
| 52 | 51 | feqmptd | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D 𝐹 ) = ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 53 | fveq2 | ⊢ ( 𝑦 = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) → ( ∗ ‘ 𝑦 ) = ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) | |
| 54 | 50 52 32 53 | fmptco | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ∗ ∘ ( ℝ D 𝐹 ) ) = ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↦ ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 55 | 10 47 54 | 3eqtr4d | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ 𝐹 ) ) = ( ∗ ∘ ( ℝ D 𝐹 ) ) ) |