This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate complex function continuity to topological continuity. (Contributed by Paul Chapman, 28-Nov-2007) (Revised by Mario Carneiro, 7-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cncfcn1.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| Assertion | cncfcn1 | ⊢ ( ℂ –cn→ ℂ ) = ( 𝐽 Cn 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfcn1.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | ssid | ⊢ ℂ ⊆ ℂ | |
| 3 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 4 | 3 | toponrestid | ⊢ 𝐽 = ( 𝐽 ↾t ℂ ) |
| 5 | 1 4 4 | cncfcn | ⊢ ( ( ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℂ –cn→ ℂ ) = ( 𝐽 Cn 𝐽 ) ) |
| 6 | 2 2 5 | mp2an | ⊢ ( ℂ –cn→ ℂ ) = ( 𝐽 Cn 𝐽 ) |