This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj . (This doesn't follow from dvcobr because * is not a function on the reals, and even if we used complex derivatives, * is not complex-differentiable.) (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcj.f | |- ( ph -> F : X --> CC ) |
|
| dvcj.x | |- ( ph -> X C_ RR ) |
||
| dvcj.c | |- ( ph -> C e. dom ( RR _D F ) ) |
||
| Assertion | dvcjbr | |- ( ph -> C ( RR _D ( * o. F ) ) ( * ` ( ( RR _D F ) ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcj.f | |- ( ph -> F : X --> CC ) |
|
| 2 | dvcj.x | |- ( ph -> X C_ RR ) |
|
| 3 | dvcj.c | |- ( ph -> C e. dom ( RR _D F ) ) |
|
| 4 | ax-resscn | |- RR C_ CC |
|
| 5 | 4 | a1i | |- ( ph -> RR C_ CC ) |
| 6 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 7 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 8 | 5 1 2 6 7 | dvbssntr | |- ( ph -> dom ( RR _D F ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` X ) ) |
| 9 | 8 3 | sseldd | |- ( ph -> C e. ( ( int ` ( topGen ` ran (,) ) ) ` X ) ) |
| 10 | 2 4 | sstrdi | |- ( ph -> X C_ CC ) |
| 11 | 4 | a1i | |- ( ( F : X --> CC /\ X C_ RR ) -> RR C_ CC ) |
| 12 | simpl | |- ( ( F : X --> CC /\ X C_ RR ) -> F : X --> CC ) |
|
| 13 | simpr | |- ( ( F : X --> CC /\ X C_ RR ) -> X C_ RR ) |
|
| 14 | 11 12 13 | dvbss | |- ( ( F : X --> CC /\ X C_ RR ) -> dom ( RR _D F ) C_ X ) |
| 15 | 1 2 14 | syl2anc | |- ( ph -> dom ( RR _D F ) C_ X ) |
| 16 | 15 3 | sseldd | |- ( ph -> C e. X ) |
| 17 | 1 10 16 | dvlem | |- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) e. CC ) |
| 18 | 17 | fmpttd | |- ( ph -> ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) : ( X \ { C } ) --> CC ) |
| 19 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 20 | 7 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 21 | 20 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 22 | dvf | |- ( RR _D F ) : dom ( RR _D F ) --> CC |
|
| 23 | ffun | |- ( ( RR _D F ) : dom ( RR _D F ) --> CC -> Fun ( RR _D F ) ) |
|
| 24 | funfvbrb | |- ( Fun ( RR _D F ) -> ( C e. dom ( RR _D F ) <-> C ( RR _D F ) ( ( RR _D F ) ` C ) ) ) |
|
| 25 | 22 23 24 | mp2b | |- ( C e. dom ( RR _D F ) <-> C ( RR _D F ) ( ( RR _D F ) ` C ) ) |
| 26 | 3 25 | sylib | |- ( ph -> C ( RR _D F ) ( ( RR _D F ) ` C ) ) |
| 27 | eqid | |- ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) = ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) |
|
| 28 | 6 7 27 5 1 2 | eldv | |- ( ph -> ( C ( RR _D F ) ( ( RR _D F ) ` C ) <-> ( C e. ( ( int ` ( topGen ` ran (,) ) ) ` X ) /\ ( ( RR _D F ) ` C ) e. ( ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) limCC C ) ) ) ) |
| 29 | 26 28 | mpbid | |- ( ph -> ( C e. ( ( int ` ( topGen ` ran (,) ) ) ` X ) /\ ( ( RR _D F ) ` C ) e. ( ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) limCC C ) ) ) |
| 30 | 29 | simprd | |- ( ph -> ( ( RR _D F ) ` C ) e. ( ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) limCC C ) ) |
| 31 | cjcncf | |- * e. ( CC -cn-> CC ) |
|
| 32 | 7 | cncfcn1 | |- ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
| 33 | 31 32 | eleqtri | |- * e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
| 34 | 22 | ffvelcdmi | |- ( C e. dom ( RR _D F ) -> ( ( RR _D F ) ` C ) e. CC ) |
| 35 | 3 34 | syl | |- ( ph -> ( ( RR _D F ) ` C ) e. CC ) |
| 36 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 37 | 36 | cncnpi | |- ( ( * e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) /\ ( ( RR _D F ) ` C ) e. CC ) -> * e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( RR _D F ) ` C ) ) ) |
| 38 | 33 35 37 | sylancr | |- ( ph -> * e. ( ( ( TopOpen ` CCfld ) CnP ( TopOpen ` CCfld ) ) ` ( ( RR _D F ) ` C ) ) ) |
| 39 | 18 19 7 21 30 38 | limccnp | |- ( ph -> ( * ` ( ( RR _D F ) ` C ) ) e. ( ( * o. ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) limCC C ) ) |
| 40 | cjf | |- * : CC --> CC |
|
| 41 | 40 | a1i | |- ( ph -> * : CC --> CC ) |
| 42 | 41 17 | cofmpt | |- ( ph -> ( * o. ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) = ( x e. ( X \ { C } ) |-> ( * ` ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) ) |
| 43 | 1 | adantr | |- ( ( ph /\ x e. ( X \ { C } ) ) -> F : X --> CC ) |
| 44 | eldifi | |- ( x e. ( X \ { C } ) -> x e. X ) |
|
| 45 | 44 | adantl | |- ( ( ph /\ x e. ( X \ { C } ) ) -> x e. X ) |
| 46 | 43 45 | ffvelcdmd | |- ( ( ph /\ x e. ( X \ { C } ) ) -> ( F ` x ) e. CC ) |
| 47 | 1 16 | ffvelcdmd | |- ( ph -> ( F ` C ) e. CC ) |
| 48 | 47 | adantr | |- ( ( ph /\ x e. ( X \ { C } ) ) -> ( F ` C ) e. CC ) |
| 49 | 46 48 | subcld | |- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( F ` x ) - ( F ` C ) ) e. CC ) |
| 50 | 2 | sselda | |- ( ( ph /\ x e. X ) -> x e. RR ) |
| 51 | 44 50 | sylan2 | |- ( ( ph /\ x e. ( X \ { C } ) ) -> x e. RR ) |
| 52 | 2 16 | sseldd | |- ( ph -> C e. RR ) |
| 53 | 52 | adantr | |- ( ( ph /\ x e. ( X \ { C } ) ) -> C e. RR ) |
| 54 | 51 53 | resubcld | |- ( ( ph /\ x e. ( X \ { C } ) ) -> ( x - C ) e. RR ) |
| 55 | 54 | recnd | |- ( ( ph /\ x e. ( X \ { C } ) ) -> ( x - C ) e. CC ) |
| 56 | 51 | recnd | |- ( ( ph /\ x e. ( X \ { C } ) ) -> x e. CC ) |
| 57 | 53 | recnd | |- ( ( ph /\ x e. ( X \ { C } ) ) -> C e. CC ) |
| 58 | eldifsni | |- ( x e. ( X \ { C } ) -> x =/= C ) |
|
| 59 | 58 | adantl | |- ( ( ph /\ x e. ( X \ { C } ) ) -> x =/= C ) |
| 60 | 56 57 59 | subne0d | |- ( ( ph /\ x e. ( X \ { C } ) ) -> ( x - C ) =/= 0 ) |
| 61 | 49 55 60 | cjdivd | |- ( ( ph /\ x e. ( X \ { C } ) ) -> ( * ` ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) = ( ( * ` ( ( F ` x ) - ( F ` C ) ) ) / ( * ` ( x - C ) ) ) ) |
| 62 | cjsub | |- ( ( ( F ` x ) e. CC /\ ( F ` C ) e. CC ) -> ( * ` ( ( F ` x ) - ( F ` C ) ) ) = ( ( * ` ( F ` x ) ) - ( * ` ( F ` C ) ) ) ) |
|
| 63 | 46 48 62 | syl2anc | |- ( ( ph /\ x e. ( X \ { C } ) ) -> ( * ` ( ( F ` x ) - ( F ` C ) ) ) = ( ( * ` ( F ` x ) ) - ( * ` ( F ` C ) ) ) ) |
| 64 | fvco3 | |- ( ( F : X --> CC /\ x e. X ) -> ( ( * o. F ) ` x ) = ( * ` ( F ` x ) ) ) |
|
| 65 | 1 44 64 | syl2an | |- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( * o. F ) ` x ) = ( * ` ( F ` x ) ) ) |
| 66 | fvco3 | |- ( ( F : X --> CC /\ C e. X ) -> ( ( * o. F ) ` C ) = ( * ` ( F ` C ) ) ) |
|
| 67 | 1 16 66 | syl2anc | |- ( ph -> ( ( * o. F ) ` C ) = ( * ` ( F ` C ) ) ) |
| 68 | 67 | adantr | |- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( * o. F ) ` C ) = ( * ` ( F ` C ) ) ) |
| 69 | 65 68 | oveq12d | |- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) = ( ( * ` ( F ` x ) ) - ( * ` ( F ` C ) ) ) ) |
| 70 | 63 69 | eqtr4d | |- ( ( ph /\ x e. ( X \ { C } ) ) -> ( * ` ( ( F ` x ) - ( F ` C ) ) ) = ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) ) |
| 71 | 54 | cjred | |- ( ( ph /\ x e. ( X \ { C } ) ) -> ( * ` ( x - C ) ) = ( x - C ) ) |
| 72 | 70 71 | oveq12d | |- ( ( ph /\ x e. ( X \ { C } ) ) -> ( ( * ` ( ( F ` x ) - ( F ` C ) ) ) / ( * ` ( x - C ) ) ) = ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) |
| 73 | 61 72 | eqtrd | |- ( ( ph /\ x e. ( X \ { C } ) ) -> ( * ` ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) = ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) |
| 74 | 73 | mpteq2dva | |- ( ph -> ( x e. ( X \ { C } ) |-> ( * ` ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) = ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) ) |
| 75 | 42 74 | eqtrd | |- ( ph -> ( * o. ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) = ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) ) |
| 76 | 75 | oveq1d | |- ( ph -> ( ( * o. ( x e. ( X \ { C } ) |-> ( ( ( F ` x ) - ( F ` C ) ) / ( x - C ) ) ) ) limCC C ) = ( ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) limCC C ) ) |
| 77 | 39 76 | eleqtrd | |- ( ph -> ( * ` ( ( RR _D F ) ` C ) ) e. ( ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) limCC C ) ) |
| 78 | eqid | |- ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) = ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) |
|
| 79 | fco | |- ( ( * : CC --> CC /\ F : X --> CC ) -> ( * o. F ) : X --> CC ) |
|
| 80 | 40 1 79 | sylancr | |- ( ph -> ( * o. F ) : X --> CC ) |
| 81 | 6 7 78 5 80 2 | eldv | |- ( ph -> ( C ( RR _D ( * o. F ) ) ( * ` ( ( RR _D F ) ` C ) ) <-> ( C e. ( ( int ` ( topGen ` ran (,) ) ) ` X ) /\ ( * ` ( ( RR _D F ) ` C ) ) e. ( ( x e. ( X \ { C } ) |-> ( ( ( ( * o. F ) ` x ) - ( ( * o. F ) ` C ) ) / ( x - C ) ) ) limCC C ) ) ) ) |
| 82 | 9 77 81 | mpbir2and | |- ( ph -> C ( RR _D ( * o. F ) ) ( * ` ( ( RR _D F ) ` C ) ) ) |