This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite hull of a product of modules is additionally closed under scalar multiplication and thus is a linear subspace of the product. (Contributed by Stefan O'Rear, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dsmmlss.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| dsmmlss.s | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) | ||
| dsmmlss.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ LMod ) | ||
| dsmmlss.k | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) = 𝑆 ) | ||
| dsmmlss.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | ||
| dsmmlss.u | ⊢ 𝑈 = ( LSubSp ‘ 𝑃 ) | ||
| dsmmlss.h | ⊢ 𝐻 = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) | ||
| Assertion | dsmmlss | ⊢ ( 𝜑 → 𝐻 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmlss.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 2 | dsmmlss.s | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) | |
| 3 | dsmmlss.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ LMod ) | |
| 4 | dsmmlss.k | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) = 𝑆 ) | |
| 5 | dsmmlss.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| 6 | dsmmlss.u | ⊢ 𝑈 = ( LSubSp ‘ 𝑃 ) | |
| 7 | dsmmlss.h | ⊢ 𝐻 = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) | |
| 8 | lmodgrp | ⊢ ( 𝑎 ∈ LMod → 𝑎 ∈ Grp ) | |
| 9 | 8 | ssriv | ⊢ LMod ⊆ Grp |
| 10 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ LMod ∧ LMod ⊆ Grp ) → 𝑅 : 𝐼 ⟶ Grp ) | |
| 11 | 3 9 10 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) |
| 12 | 5 7 1 2 11 | dsmmsubg | ⊢ ( 𝜑 → 𝐻 ∈ ( SubGrp ‘ 𝑃 ) ) |
| 13 | 5 2 1 3 4 | prdslmodd | ⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → 𝑃 ∈ LMod ) |
| 15 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | |
| 16 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → 𝑏 ∈ 𝐻 ) | |
| 17 | eqid | ⊢ ( 𝑆 ⊕m 𝑅 ) = ( 𝑆 ⊕m 𝑅 ) | |
| 18 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 19 | 3 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 20 | 5 17 18 7 1 19 | dsmmelbas | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐻 ↔ ( 𝑏 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑥 ∈ 𝐼 ∣ ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑏 ∈ 𝐻 ↔ ( 𝑏 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑥 ∈ 𝐼 ∣ ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) ) |
| 22 | 16 21 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑏 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑥 ∈ 𝐼 ∣ ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) |
| 23 | 22 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → 𝑏 ∈ ( Base ‘ 𝑃 ) ) |
| 24 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 25 | eqid | ⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) | |
| 26 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) | |
| 27 | 18 24 25 26 | lmodvscl | ⊢ ( ( 𝑃 ∈ LMod ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) |
| 28 | 14 15 23 27 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) |
| 29 | 22 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → { 𝑥 ∈ 𝐼 ∣ ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) |
| 30 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 31 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ Ring ) |
| 32 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 33 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 34 | 3 1 | fexd | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 35 | 5 2 34 | prdssca | ⊢ ( 𝜑 → 𝑆 = ( Scalar ‘ 𝑃 ) ) |
| 36 | 35 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 37 | 36 | eleq2d | ⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝑆 ) ↔ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
| 38 | 37 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
| 39 | 38 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
| 40 | 39 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
| 41 | 23 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑃 ) ) |
| 42 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) | |
| 43 | 5 18 25 30 31 32 33 40 41 42 | prdsvscafval | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) ) |
| 44 | 43 | adantrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) ) |
| 45 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ LMod ) |
| 46 | 45 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ LMod ) |
| 47 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | |
| 48 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 = ( Scalar ‘ 𝑃 ) ) |
| 49 | 4 48 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Scalar ‘ 𝑃 ) ) |
| 50 | 49 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 51 | 50 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 52 | 47 51 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 53 | eqid | ⊢ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) | |
| 54 | eqid | ⊢ ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) = ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) | |
| 55 | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) | |
| 56 | eqid | ⊢ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) | |
| 57 | 53 54 55 56 | lmodvs0 | ⊢ ( ( ( 𝑅 ‘ 𝑥 ) ∈ LMod ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 58 | 46 52 57 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 59 | oveq2 | ⊢ ( ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) = ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | |
| 60 | 59 | eqeq1d | ⊢ ( ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) → ( ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ↔ ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 61 | 58 60 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 62 | 61 | impr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) → ( 𝑎 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑏 ‘ 𝑥 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 63 | 44 62 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ ( 𝑥 ∈ 𝐼 ∧ ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 64 | 63 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 65 | 64 | necon3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) → ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 66 | 65 | ss2rabdv | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → { 𝑥 ∈ 𝐼 ∣ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ⊆ { 𝑥 ∈ 𝐼 ∣ ( 𝑏 ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ) |
| 67 | 29 66 | ssfid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → { 𝑥 ∈ 𝐼 ∣ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) |
| 68 | 5 17 18 7 1 19 | dsmmelbas | ⊢ ( 𝜑 → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ↔ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( Base ‘ 𝑃 ) ∧ { 𝑥 ∈ 𝐼 ∣ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) ) |
| 69 | 68 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ↔ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ ( Base ‘ 𝑃 ) ∧ { 𝑥 ∈ 𝐼 ∣ ( ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) } ∈ Fin ) ) ) |
| 70 | 28 67 69 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ) |
| 71 | 70 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ 𝐻 ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ) |
| 72 | 24 26 18 25 6 | islss4 | ⊢ ( 𝑃 ∈ LMod → ( 𝐻 ∈ 𝑈 ↔ ( 𝐻 ∈ ( SubGrp ‘ 𝑃 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ 𝐻 ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ) ) ) |
| 73 | 13 72 | syl | ⊢ ( 𝜑 → ( 𝐻 ∈ 𝑈 ↔ ( 𝐻 ∈ ( SubGrp ‘ 𝑃 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∀ 𝑏 ∈ 𝐻 ( 𝑎 ( ·𝑠 ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ) ) ) |
| 74 | 12 71 73 | mpbir2and | ⊢ ( 𝜑 → 𝐻 ∈ 𝑈 ) |