This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Anything times the zero vector is the zero vector. Equation 1b of Kreyszig p. 51. ( hvmul0 analog.) (Contributed by NM, 12-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvs0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| lmodvs0.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lmodvs0.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lmodvs0.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | lmodvs0 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvs0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | lmodvs0.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | lmodvs0.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 4 | lmodvs0.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 5 | 1 | lmodring | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 6 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 7 | eqid | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) | |
| 8 | 3 6 7 | ringrz | ⊢ ( ( 𝐹 ∈ Ring ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) ) |
| 9 | 5 8 | sylan | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) ) · 0 ) = ( ( 0g ‘ 𝐹 ) · 0 ) ) |
| 11 | simpl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → 𝑊 ∈ LMod ) | |
| 12 | simpr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → 𝑋 ∈ 𝐾 ) | |
| 13 | 5 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → 𝐹 ∈ Ring ) |
| 14 | 3 7 | ring0cl | ⊢ ( 𝐹 ∈ Ring → ( 0g ‘ 𝐹 ) ∈ 𝐾 ) |
| 15 | 13 14 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( 0g ‘ 𝐹 ) ∈ 𝐾 ) |
| 16 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 17 | 16 4 | lmod0vcl | ⊢ ( 𝑊 ∈ LMod → 0 ∈ ( Base ‘ 𝑊 ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → 0 ∈ ( Base ‘ 𝑊 ) ) |
| 19 | 16 1 2 3 6 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 ∈ 𝐾 ∧ ( 0g ‘ 𝐹 ) ∈ 𝐾 ∧ 0 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) ) · 0 ) = ( 𝑋 · ( ( 0g ‘ 𝐹 ) · 0 ) ) ) |
| 20 | 11 12 15 18 19 | syl13anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) ) · 0 ) = ( 𝑋 · ( ( 0g ‘ 𝐹 ) · 0 ) ) ) |
| 21 | 16 1 2 7 4 | lmod0vs | ⊢ ( ( 𝑊 ∈ LMod ∧ 0 ∈ ( Base ‘ 𝑊 ) ) → ( ( 0g ‘ 𝐹 ) · 0 ) = 0 ) |
| 22 | 18 21 | syldan | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( ( 0g ‘ 𝐹 ) · 0 ) = 0 ) |
| 23 | 22 | oveq2d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 · ( ( 0g ‘ 𝐹 ) · 0 ) ) = ( 𝑋 · 0 ) ) |
| 24 | 20 23 | eqtrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( ( 𝑋 ( .r ‘ 𝐹 ) ( 0g ‘ 𝐹 ) ) · 0 ) = ( 𝑋 · 0 ) ) |
| 25 | 10 24 22 | 3eqtr3d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( 𝑋 · 0 ) = 0 ) |