This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the finitely supported hull of a structure product in terms of the index set. (Contributed by Stefan O'Rear, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dsmmelbas.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| dsmmelbas.c | ⊢ 𝐶 = ( 𝑆 ⊕m 𝑅 ) | ||
| dsmmelbas.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| dsmmelbas.h | ⊢ 𝐻 = ( Base ‘ 𝐶 ) | ||
| dsmmelbas.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| dsmmelbas.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | ||
| Assertion | dsmmelbas | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐻 ↔ ( 𝑋 ∈ 𝐵 ∧ { 𝑎 ∈ 𝐼 ∣ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmelbas.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| 2 | dsmmelbas.c | ⊢ 𝐶 = ( 𝑆 ⊕m 𝑅 ) | |
| 3 | dsmmelbas.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | dsmmelbas.h | ⊢ 𝐻 = ( Base ‘ 𝐶 ) | |
| 5 | dsmmelbas.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | dsmmelbas.r | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) | |
| 7 | 2 | fveq2i | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) |
| 8 | 4 7 | eqtri | ⊢ 𝐻 = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) |
| 9 | fnex | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) → 𝑅 ∈ V ) | |
| 10 | 6 5 9 | syl2anc | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 11 | eqid | ⊢ { 𝑏 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑎 ∈ dom 𝑅 ∣ ( 𝑏 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin } = { 𝑏 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑎 ∈ dom 𝑅 ∣ ( 𝑏 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin } | |
| 12 | 11 | dsmmbase | ⊢ ( 𝑅 ∈ V → { 𝑏 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑎 ∈ dom 𝑅 ∣ ( 𝑏 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin } = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) ) |
| 13 | 10 12 | syl | ⊢ ( 𝜑 → { 𝑏 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑎 ∈ dom 𝑅 ∣ ( 𝑏 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin } = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) ) |
| 14 | 8 13 | eqtr4id | ⊢ ( 𝜑 → 𝐻 = { 𝑏 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑎 ∈ dom 𝑅 ∣ ( 𝑏 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin } ) |
| 15 | 14 | eleq2d | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐻 ↔ 𝑋 ∈ { 𝑏 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑎 ∈ dom 𝑅 ∣ ( 𝑏 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin } ) ) |
| 16 | fveq1 | ⊢ ( 𝑏 = 𝑋 → ( 𝑏 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑎 ) ) | |
| 17 | 16 | neeq1d | ⊢ ( 𝑏 = 𝑋 → ( ( 𝑏 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ↔ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) ) ) |
| 18 | 17 | rabbidv | ⊢ ( 𝑏 = 𝑋 → { 𝑎 ∈ dom 𝑅 ∣ ( 𝑏 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } = { 𝑎 ∈ dom 𝑅 ∣ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ) |
| 19 | 18 | eleq1d | ⊢ ( 𝑏 = 𝑋 → ( { 𝑎 ∈ dom 𝑅 ∣ ( 𝑏 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ↔ { 𝑎 ∈ dom 𝑅 ∣ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) ) |
| 20 | 19 | elrab | ⊢ ( 𝑋 ∈ { 𝑏 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑎 ∈ dom 𝑅 ∣ ( 𝑏 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin } ↔ ( 𝑋 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∧ { 𝑎 ∈ dom 𝑅 ∣ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) ) |
| 21 | 1 | fveq2i | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 𝑆 Xs 𝑅 ) ) |
| 22 | 3 21 | eqtr2i | ⊢ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) = 𝐵 |
| 23 | 22 | eleq2i | ⊢ ( 𝑋 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ↔ 𝑋 ∈ 𝐵 ) |
| 24 | 23 | a1i | ⊢ ( 𝜑 → ( 𝑋 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ↔ 𝑋 ∈ 𝐵 ) ) |
| 25 | fndm | ⊢ ( 𝑅 Fn 𝐼 → dom 𝑅 = 𝐼 ) | |
| 26 | rabeq | ⊢ ( dom 𝑅 = 𝐼 → { 𝑎 ∈ dom 𝑅 ∣ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } = { 𝑎 ∈ 𝐼 ∣ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ) | |
| 27 | 6 25 26 | 3syl | ⊢ ( 𝜑 → { 𝑎 ∈ dom 𝑅 ∣ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } = { 𝑎 ∈ 𝐼 ∣ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ) |
| 28 | 27 | eleq1d | ⊢ ( 𝜑 → ( { 𝑎 ∈ dom 𝑅 ∣ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ↔ { 𝑎 ∈ 𝐼 ∣ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) ) |
| 29 | 24 28 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑋 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∧ { 𝑎 ∈ dom 𝑅 ∣ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) ↔ ( 𝑋 ∈ 𝐵 ∧ { 𝑎 ∈ 𝐼 ∣ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) ) ) |
| 30 | 20 29 | bitrid | ⊢ ( 𝜑 → ( 𝑋 ∈ { 𝑏 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑎 ∈ dom 𝑅 ∣ ( 𝑏 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin } ↔ ( 𝑋 ∈ 𝐵 ∧ { 𝑎 ∈ 𝐼 ∣ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) ) ) |
| 31 | 15 30 | bitrd | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐻 ↔ ( 𝑋 ∈ 𝐵 ∧ { 𝑎 ∈ 𝐼 ∣ ( 𝑋 ‘ 𝑎 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑎 ) ) } ∈ Fin ) ) ) |