This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite hull of a product of modules is additionally closed under scalar multiplication and thus is a linear subspace of the product. (Contributed by Stefan O'Rear, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dsmmlss.i | |- ( ph -> I e. W ) |
|
| dsmmlss.s | |- ( ph -> S e. Ring ) |
||
| dsmmlss.r | |- ( ph -> R : I --> LMod ) |
||
| dsmmlss.k | |- ( ( ph /\ x e. I ) -> ( Scalar ` ( R ` x ) ) = S ) |
||
| dsmmlss.p | |- P = ( S Xs_ R ) |
||
| dsmmlss.u | |- U = ( LSubSp ` P ) |
||
| dsmmlss.h | |- H = ( Base ` ( S (+)m R ) ) |
||
| Assertion | dsmmlss | |- ( ph -> H e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmlss.i | |- ( ph -> I e. W ) |
|
| 2 | dsmmlss.s | |- ( ph -> S e. Ring ) |
|
| 3 | dsmmlss.r | |- ( ph -> R : I --> LMod ) |
|
| 4 | dsmmlss.k | |- ( ( ph /\ x e. I ) -> ( Scalar ` ( R ` x ) ) = S ) |
|
| 5 | dsmmlss.p | |- P = ( S Xs_ R ) |
|
| 6 | dsmmlss.u | |- U = ( LSubSp ` P ) |
|
| 7 | dsmmlss.h | |- H = ( Base ` ( S (+)m R ) ) |
|
| 8 | lmodgrp | |- ( a e. LMod -> a e. Grp ) |
|
| 9 | 8 | ssriv | |- LMod C_ Grp |
| 10 | fss | |- ( ( R : I --> LMod /\ LMod C_ Grp ) -> R : I --> Grp ) |
|
| 11 | 3 9 10 | sylancl | |- ( ph -> R : I --> Grp ) |
| 12 | 5 7 1 2 11 | dsmmsubg | |- ( ph -> H e. ( SubGrp ` P ) ) |
| 13 | 5 2 1 3 4 | prdslmodd | |- ( ph -> P e. LMod ) |
| 14 | 13 | adantr | |- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) -> P e. LMod ) |
| 15 | simprl | |- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) -> a e. ( Base ` ( Scalar ` P ) ) ) |
|
| 16 | simprr | |- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) -> b e. H ) |
|
| 17 | eqid | |- ( S (+)m R ) = ( S (+)m R ) |
|
| 18 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 19 | 3 | ffnd | |- ( ph -> R Fn I ) |
| 20 | 5 17 18 7 1 19 | dsmmelbas | |- ( ph -> ( b e. H <-> ( b e. ( Base ` P ) /\ { x e. I | ( b ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin ) ) ) |
| 21 | 20 | adantr | |- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) -> ( b e. H <-> ( b e. ( Base ` P ) /\ { x e. I | ( b ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin ) ) ) |
| 22 | 16 21 | mpbid | |- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) -> ( b e. ( Base ` P ) /\ { x e. I | ( b ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin ) ) |
| 23 | 22 | simpld | |- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) -> b e. ( Base ` P ) ) |
| 24 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 25 | eqid | |- ( .s ` P ) = ( .s ` P ) |
|
| 26 | eqid | |- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
|
| 27 | 18 24 25 26 | lmodvscl | |- ( ( P e. LMod /\ a e. ( Base ` ( Scalar ` P ) ) /\ b e. ( Base ` P ) ) -> ( a ( .s ` P ) b ) e. ( Base ` P ) ) |
| 28 | 14 15 23 27 | syl3anc | |- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) -> ( a ( .s ` P ) b ) e. ( Base ` P ) ) |
| 29 | 22 | simprd | |- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) -> { x e. I | ( b ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin ) |
| 30 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 31 | 2 | ad2antrr | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ x e. I ) -> S e. Ring ) |
| 32 | 1 | ad2antrr | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ x e. I ) -> I e. W ) |
| 33 | 19 | ad2antrr | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ x e. I ) -> R Fn I ) |
| 34 | 3 1 | fexd | |- ( ph -> R e. _V ) |
| 35 | 5 2 34 | prdssca | |- ( ph -> S = ( Scalar ` P ) ) |
| 36 | 35 | fveq2d | |- ( ph -> ( Base ` S ) = ( Base ` ( Scalar ` P ) ) ) |
| 37 | 36 | eleq2d | |- ( ph -> ( a e. ( Base ` S ) <-> a e. ( Base ` ( Scalar ` P ) ) ) ) |
| 38 | 37 | biimpar | |- ( ( ph /\ a e. ( Base ` ( Scalar ` P ) ) ) -> a e. ( Base ` S ) ) |
| 39 | 38 | adantrr | |- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) -> a e. ( Base ` S ) ) |
| 40 | 39 | adantr | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ x e. I ) -> a e. ( Base ` S ) ) |
| 41 | 23 | adantr | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ x e. I ) -> b e. ( Base ` P ) ) |
| 42 | simpr | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ x e. I ) -> x e. I ) |
|
| 43 | 5 18 25 30 31 32 33 40 41 42 | prdsvscafval | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ x e. I ) -> ( ( a ( .s ` P ) b ) ` x ) = ( a ( .s ` ( R ` x ) ) ( b ` x ) ) ) |
| 44 | 43 | adantrr | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ ( x e. I /\ ( b ` x ) = ( 0g ` ( R ` x ) ) ) ) -> ( ( a ( .s ` P ) b ) ` x ) = ( a ( .s ` ( R ` x ) ) ( b ` x ) ) ) |
| 45 | 3 | ffvelcdmda | |- ( ( ph /\ x e. I ) -> ( R ` x ) e. LMod ) |
| 46 | 45 | adantlr | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ x e. I ) -> ( R ` x ) e. LMod ) |
| 47 | simplrl | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ x e. I ) -> a e. ( Base ` ( Scalar ` P ) ) ) |
|
| 48 | 35 | adantr | |- ( ( ph /\ x e. I ) -> S = ( Scalar ` P ) ) |
| 49 | 4 48 | eqtrd | |- ( ( ph /\ x e. I ) -> ( Scalar ` ( R ` x ) ) = ( Scalar ` P ) ) |
| 50 | 49 | fveq2d | |- ( ( ph /\ x e. I ) -> ( Base ` ( Scalar ` ( R ` x ) ) ) = ( Base ` ( Scalar ` P ) ) ) |
| 51 | 50 | adantlr | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ x e. I ) -> ( Base ` ( Scalar ` ( R ` x ) ) ) = ( Base ` ( Scalar ` P ) ) ) |
| 52 | 47 51 | eleqtrrd | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ x e. I ) -> a e. ( Base ` ( Scalar ` ( R ` x ) ) ) ) |
| 53 | eqid | |- ( Scalar ` ( R ` x ) ) = ( Scalar ` ( R ` x ) ) |
|
| 54 | eqid | |- ( .s ` ( R ` x ) ) = ( .s ` ( R ` x ) ) |
|
| 55 | eqid | |- ( Base ` ( Scalar ` ( R ` x ) ) ) = ( Base ` ( Scalar ` ( R ` x ) ) ) |
|
| 56 | eqid | |- ( 0g ` ( R ` x ) ) = ( 0g ` ( R ` x ) ) |
|
| 57 | 53 54 55 56 | lmodvs0 | |- ( ( ( R ` x ) e. LMod /\ a e. ( Base ` ( Scalar ` ( R ` x ) ) ) ) -> ( a ( .s ` ( R ` x ) ) ( 0g ` ( R ` x ) ) ) = ( 0g ` ( R ` x ) ) ) |
| 58 | 46 52 57 | syl2anc | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ x e. I ) -> ( a ( .s ` ( R ` x ) ) ( 0g ` ( R ` x ) ) ) = ( 0g ` ( R ` x ) ) ) |
| 59 | oveq2 | |- ( ( b ` x ) = ( 0g ` ( R ` x ) ) -> ( a ( .s ` ( R ` x ) ) ( b ` x ) ) = ( a ( .s ` ( R ` x ) ) ( 0g ` ( R ` x ) ) ) ) |
|
| 60 | 59 | eqeq1d | |- ( ( b ` x ) = ( 0g ` ( R ` x ) ) -> ( ( a ( .s ` ( R ` x ) ) ( b ` x ) ) = ( 0g ` ( R ` x ) ) <-> ( a ( .s ` ( R ` x ) ) ( 0g ` ( R ` x ) ) ) = ( 0g ` ( R ` x ) ) ) ) |
| 61 | 58 60 | syl5ibrcom | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ x e. I ) -> ( ( b ` x ) = ( 0g ` ( R ` x ) ) -> ( a ( .s ` ( R ` x ) ) ( b ` x ) ) = ( 0g ` ( R ` x ) ) ) ) |
| 62 | 61 | impr | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ ( x e. I /\ ( b ` x ) = ( 0g ` ( R ` x ) ) ) ) -> ( a ( .s ` ( R ` x ) ) ( b ` x ) ) = ( 0g ` ( R ` x ) ) ) |
| 63 | 44 62 | eqtrd | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ ( x e. I /\ ( b ` x ) = ( 0g ` ( R ` x ) ) ) ) -> ( ( a ( .s ` P ) b ) ` x ) = ( 0g ` ( R ` x ) ) ) |
| 64 | 63 | expr | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ x e. I ) -> ( ( b ` x ) = ( 0g ` ( R ` x ) ) -> ( ( a ( .s ` P ) b ) ` x ) = ( 0g ` ( R ` x ) ) ) ) |
| 65 | 64 | necon3d | |- ( ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) /\ x e. I ) -> ( ( ( a ( .s ` P ) b ) ` x ) =/= ( 0g ` ( R ` x ) ) -> ( b ` x ) =/= ( 0g ` ( R ` x ) ) ) ) |
| 66 | 65 | ss2rabdv | |- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) -> { x e. I | ( ( a ( .s ` P ) b ) ` x ) =/= ( 0g ` ( R ` x ) ) } C_ { x e. I | ( b ` x ) =/= ( 0g ` ( R ` x ) ) } ) |
| 67 | 29 66 | ssfid | |- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) -> { x e. I | ( ( a ( .s ` P ) b ) ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin ) |
| 68 | 5 17 18 7 1 19 | dsmmelbas | |- ( ph -> ( ( a ( .s ` P ) b ) e. H <-> ( ( a ( .s ` P ) b ) e. ( Base ` P ) /\ { x e. I | ( ( a ( .s ` P ) b ) ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin ) ) ) |
| 69 | 68 | adantr | |- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) -> ( ( a ( .s ` P ) b ) e. H <-> ( ( a ( .s ` P ) b ) e. ( Base ` P ) /\ { x e. I | ( ( a ( .s ` P ) b ) ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin ) ) ) |
| 70 | 28 67 69 | mpbir2and | |- ( ( ph /\ ( a e. ( Base ` ( Scalar ` P ) ) /\ b e. H ) ) -> ( a ( .s ` P ) b ) e. H ) |
| 71 | 70 | ralrimivva | |- ( ph -> A. a e. ( Base ` ( Scalar ` P ) ) A. b e. H ( a ( .s ` P ) b ) e. H ) |
| 72 | 24 26 18 25 6 | islss4 | |- ( P e. LMod -> ( H e. U <-> ( H e. ( SubGrp ` P ) /\ A. a e. ( Base ` ( Scalar ` P ) ) A. b e. H ( a ( .s ` P ) b ) e. H ) ) ) |
| 73 | 13 72 | syl | |- ( ph -> ( H e. U <-> ( H e. ( SubGrp ` P ) /\ A. a e. ( Base ` ( Scalar ` P ) ) A. b e. H ( a ( .s ` P ) b ) e. H ) ) ) |
| 74 | 12 71 73 | mpbir2and | |- ( ph -> H e. U ) |