This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite hull of a product of groups is additionally closed under negation and thus is a subgroup of the product. (Contributed by Stefan O'Rear, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dsmmsubg.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| dsmmsubg.h | ⊢ 𝐻 = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) | ||
| dsmmsubg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| dsmmsubg.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| dsmmsubg.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) | ||
| Assertion | dsmmsubg | ⊢ ( 𝜑 → 𝐻 ∈ ( SubGrp ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmsubg.p | ⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) | |
| 2 | dsmmsubg.h | ⊢ 𝐻 = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) | |
| 3 | dsmmsubg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 4 | dsmmsubg.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 5 | dsmmsubg.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) | |
| 6 | eqidd | ⊢ ( 𝜑 → ( 𝑃 ↾s 𝐻 ) = ( 𝑃 ↾s 𝐻 ) ) | |
| 7 | eqidd | ⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) ) | |
| 8 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) ) | |
| 9 | 5 3 | fexd | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 10 | eqid | ⊢ { 𝑎 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑏 ∈ dom 𝑅 ∣ ( 𝑎 ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) } ∈ Fin } = { 𝑎 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑏 ∈ dom 𝑅 ∣ ( 𝑎 ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) } ∈ Fin } | |
| 11 | 10 | dsmmbase | ⊢ ( 𝑅 ∈ V → { 𝑎 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑏 ∈ dom 𝑅 ∣ ( 𝑎 ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) } ∈ Fin } = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) ) |
| 12 | 9 11 | syl | ⊢ ( 𝜑 → { 𝑎 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑏 ∈ dom 𝑅 ∣ ( 𝑎 ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) } ∈ Fin } = ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) ) |
| 13 | ssrab2 | ⊢ { 𝑎 ∈ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ∣ { 𝑏 ∈ dom 𝑅 ∣ ( 𝑎 ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) } ∈ Fin } ⊆ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) | |
| 14 | 12 13 | eqsstrrdi | ⊢ ( 𝜑 → ( Base ‘ ( 𝑆 ⊕m 𝑅 ) ) ⊆ ( Base ‘ ( 𝑆 Xs 𝑅 ) ) ) |
| 15 | 1 | fveq2i | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 𝑆 Xs 𝑅 ) ) |
| 16 | 14 2 15 | 3sstr4g | ⊢ ( 𝜑 → 𝐻 ⊆ ( Base ‘ 𝑃 ) ) |
| 17 | grpmnd | ⊢ ( 𝑎 ∈ Grp → 𝑎 ∈ Mnd ) | |
| 18 | 17 | ssriv | ⊢ Grp ⊆ Mnd |
| 19 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ Grp ∧ Grp ⊆ Mnd ) → 𝑅 : 𝐼 ⟶ Mnd ) | |
| 20 | 5 18 19 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) |
| 21 | eqid | ⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) | |
| 22 | 1 2 3 4 20 21 | dsmm0cl | ⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) ∈ 𝐻 ) |
| 23 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) → 𝐼 ∈ 𝑊 ) |
| 24 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) → 𝑆 ∈ 𝑉 ) |
| 25 | 20 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) → 𝑅 : 𝐼 ⟶ Mnd ) |
| 26 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) → 𝑎 ∈ 𝐻 ) | |
| 27 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) → 𝑏 ∈ 𝐻 ) | |
| 28 | eqid | ⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) | |
| 29 | 1 2 23 24 25 26 27 28 | dsmmacl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) → ( 𝑎 ( +g ‘ 𝑃 ) 𝑏 ) ∈ 𝐻 ) |
| 30 | 1 3 4 5 | prdsgrpd | ⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝑃 ∈ Grp ) |
| 32 | 16 | sselda | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝑎 ∈ ( Base ‘ 𝑃 ) ) |
| 33 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 34 | eqid | ⊢ ( invg ‘ 𝑃 ) = ( invg ‘ 𝑃 ) | |
| 35 | 33 34 | grpinvcl | ⊢ ( ( 𝑃 ∈ Grp ∧ 𝑎 ∈ ( Base ‘ 𝑃 ) ) → ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑃 ) ) |
| 36 | 31 32 35 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑃 ) ) |
| 37 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝑎 ∈ 𝐻 ) | |
| 38 | eqid | ⊢ ( 𝑆 ⊕m 𝑅 ) = ( 𝑆 ⊕m 𝑅 ) | |
| 39 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝐼 ∈ 𝑊 ) |
| 40 | 5 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 41 | 40 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → 𝑅 Fn 𝐼 ) |
| 42 | 1 38 33 2 39 41 | dsmmelbas | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( 𝑎 ∈ 𝐻 ↔ ( 𝑎 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑏 ∈ 𝐼 ∣ ( 𝑎 ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) } ∈ Fin ) ) ) |
| 43 | 37 42 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( 𝑎 ∈ ( Base ‘ 𝑃 ) ∧ { 𝑏 ∈ 𝐼 ∣ ( 𝑎 ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) } ∈ Fin ) ) |
| 44 | 43 | simprd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → { 𝑏 ∈ 𝐼 ∣ ( 𝑎 ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) } ∈ Fin ) |
| 45 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑏 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 46 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑏 ∈ 𝐼 ) → 𝑆 ∈ 𝑉 ) |
| 47 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑏 ∈ 𝐼 ) → 𝑅 : 𝐼 ⟶ Grp ) |
| 48 | 32 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑏 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑃 ) ) |
| 49 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑏 ∈ 𝐼 ) → 𝑏 ∈ 𝐼 ) | |
| 50 | 1 45 46 47 33 34 48 49 | prdsinvgd2 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑏 ∈ 𝐼 ) → ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) = ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) |
| 51 | 50 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑏 ∈ 𝐼 ∧ ( 𝑎 ‘ 𝑏 ) = ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) → ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) = ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) |
| 52 | fveq2 | ⊢ ( ( 𝑎 ‘ 𝑏 ) = ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) → ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) = ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) | |
| 53 | 52 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑏 ∈ 𝐼 ∧ ( 𝑎 ‘ 𝑏 ) = ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) → ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) = ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) |
| 54 | 5 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑏 ) ∈ Grp ) |
| 55 | 54 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑏 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑏 ) ∈ Grp ) |
| 56 | eqid | ⊢ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) | |
| 57 | eqid | ⊢ ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) = ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) | |
| 58 | 56 57 | grpinvid | ⊢ ( ( 𝑅 ‘ 𝑏 ) ∈ Grp → ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) |
| 59 | 55 58 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑏 ∈ 𝐼 ) → ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) |
| 60 | 59 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑏 ∈ 𝐼 ∧ ( 𝑎 ‘ 𝑏 ) = ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) → ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) |
| 61 | 51 53 60 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ( 𝑏 ∈ 𝐼 ∧ ( 𝑎 ‘ 𝑏 ) = ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) → ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) = ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) |
| 62 | 61 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑏 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑏 ) = ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) → ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) = ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) |
| 63 | 62 | necon3d | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑏 ∈ 𝐼 ) → ( ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) → ( 𝑎 ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) |
| 64 | 63 | ss2rabdv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → { 𝑏 ∈ 𝐼 ∣ ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) } ⊆ { 𝑏 ∈ 𝐼 ∣ ( 𝑎 ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) } ) |
| 65 | 44 64 | ssfid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → { 𝑏 ∈ 𝐼 ∣ ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) } ∈ Fin ) |
| 66 | 1 38 33 2 39 41 | dsmmelbas | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ∈ 𝐻 ↔ ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ∈ ( Base ‘ 𝑃 ) ∧ { 𝑏 ∈ 𝐼 ∣ ( ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ‘ 𝑏 ) ≠ ( 0g ‘ ( 𝑅 ‘ 𝑏 ) ) } ∈ Fin ) ) ) |
| 67 | 36 65 66 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ( invg ‘ 𝑃 ) ‘ 𝑎 ) ∈ 𝐻 ) |
| 68 | 6 7 8 16 22 29 67 30 | issubgrpd2 | ⊢ ( 𝜑 → 𝐻 ∈ ( SubGrp ‘ 𝑃 ) ) |