This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A family consisting entirely of trivial groups is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dprd0.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| Assertion | dprdz | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → ( 𝐺 dom DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ∧ ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) = { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprd0.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → 𝐺 ∈ Grp ) | |
| 5 | simpr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ 𝑉 ) | |
| 6 | 1 | 0subg | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 8 | 7 | fmpttd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐼 ↦ { 0 } ) : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 9 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 10 | 9 1 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 12 | 11 | snssd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → { 0 } ⊆ ( Base ‘ 𝐺 ) ) |
| 13 | 9 2 | cntzsubg | ⊢ ( ( 𝐺 ∈ Grp ∧ { 0 } ⊆ ( Base ‘ 𝐺 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ { 0 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 14 | 12 13 | syldan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → ( ( Cntz ‘ 𝐺 ) ‘ { 0 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 15 | 1 | subg0cl | ⊢ ( ( ( Cntz ‘ 𝐺 ) ‘ { 0 } ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( ( Cntz ‘ 𝐺 ) ‘ { 0 } ) ) |
| 16 | 14 15 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → 0 ∈ ( ( Cntz ‘ 𝐺 ) ‘ { 0 } ) ) |
| 17 | 16 | snssd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → { 0 } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { 0 } ) ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧 ) ) → { 0 } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { 0 } ) ) |
| 19 | simpr1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧 ) ) → 𝑦 ∈ 𝐼 ) | |
| 20 | eqidd | ⊢ ( 𝑥 = 𝑦 → { 0 } = { 0 } ) | |
| 21 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ { 0 } ) = ( 𝑥 ∈ 𝐼 ↦ { 0 } ) | |
| 22 | snex | ⊢ { 0 } ∈ V | |
| 23 | 20 21 22 | fvmpt3i | ⊢ ( 𝑦 ∈ 𝐼 → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) = { 0 } ) |
| 24 | 19 23 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) = { 0 } ) |
| 25 | simpr2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧 ) ) → 𝑧 ∈ 𝐼 ) | |
| 26 | eqidd | ⊢ ( 𝑥 = 𝑧 → { 0 } = { 0 } ) | |
| 27 | 26 21 22 | fvmpt3i | ⊢ ( 𝑧 ∈ 𝐼 → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑧 ) = { 0 } ) |
| 28 | 25 27 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑧 ) = { 0 } ) |
| 29 | 28 | fveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑧 ) ) = ( ( Cntz ‘ 𝐺 ) ‘ { 0 } ) ) |
| 30 | 18 24 29 | 3sstr4d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧 ) ) → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑧 ) ) ) |
| 31 | 23 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) = { 0 } ) |
| 32 | 31 | ineq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) = ( { 0 } ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) ) |
| 33 | 9 | subgacs | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 35 | 34 | acsmred | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 36 | imassrn | ⊢ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ⊆ ran ( 𝑥 ∈ 𝐼 ↦ { 0 } ) | |
| 37 | 8 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑥 ∈ 𝐼 ↦ { 0 } ) : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 38 | 37 | frnd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ran ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 39 | mresspw | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) | |
| 40 | 35 39 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 41 | 38 40 | sstrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ran ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 42 | 36 41 | sstrid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 43 | sspwuni | ⊢ ( ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ⊆ ( Base ‘ 𝐺 ) ) | |
| 44 | 42 43 | sylib | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 45 | 3 | mrccl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 46 | 35 44 45 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 47 | 1 | subg0cl | ⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) |
| 48 | 46 47 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → 0 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) |
| 49 | 48 | snssd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → { 0 } ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) |
| 50 | dfss2 | ⊢ ( { 0 } ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ↔ ( { 0 } ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) = { 0 } ) | |
| 51 | 49 50 | sylib | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( { 0 } ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) = { 0 } ) |
| 52 | 32 51 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) = { 0 } ) |
| 53 | eqimss | ⊢ ( ( ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) = { 0 } → ( ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) ⊆ { 0 } ) | |
| 54 | 52 53 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) “ ( 𝐼 ∖ { 𝑦 } ) ) ) ) ⊆ { 0 } ) |
| 55 | 2 1 3 4 5 8 30 54 | dmdprdd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → 𝐺 dom DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) |
| 56 | 21 7 | dmmptd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → dom ( 𝑥 ∈ 𝐼 ↦ { 0 } ) = 𝐼 ) |
| 57 | 6 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 58 | eqimss | ⊢ ( ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) = { 0 } → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) ⊆ { 0 } ) | |
| 59 | 31 58 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ‘ 𝑦 ) ⊆ { 0 } ) |
| 60 | 55 56 57 59 | dprdlub | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) ⊆ { 0 } ) |
| 61 | dprdsubg | ⊢ ( 𝐺 dom DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) → ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 62 | 1 | subg0cl | ⊢ ( ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) ) |
| 63 | 55 61 62 | 3syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → 0 ∈ ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) ) |
| 64 | 63 | snssd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → { 0 } ⊆ ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) ) |
| 65 | 60 64 | eqssd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) = { 0 } ) |
| 66 | 55 65 | jca | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → ( 𝐺 dom DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ∧ ( 𝐺 DProd ( 𝑥 ∈ 𝐼 ↦ { 0 } ) ) = { 0 } ) ) |