This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dmdprd.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| dmdprd.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| dmdprd.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | ||
| dmdprdd.1 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| dmdprdd.2 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| dmdprdd.3 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) | ||
| dmdprdd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) | ||
| dmdprdd.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ⊆ { 0 } ) | ||
| Assertion | dmdprdd | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmdprd.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 2 | dmdprd.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | dmdprd.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | dmdprdd.1 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 5 | dmdprdd.2 | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | dmdprdd.3 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) | |
| 7 | dmdprdd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) | |
| 8 | dmdprdd.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ⊆ { 0 } ) | |
| 9 | eldifsn | ⊢ ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↔ ( 𝑦 ∈ 𝐼 ∧ 𝑦 ≠ 𝑥 ) ) | |
| 10 | necom | ⊢ ( 𝑦 ≠ 𝑥 ↔ 𝑥 ≠ 𝑦 ) | |
| 11 | 10 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑦 ≠ 𝑥 ) ↔ ( 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) |
| 12 | 9 11 | bitri | ⊢ ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ↔ ( 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) ) |
| 13 | 7 | 3exp2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 → ( 𝑦 ∈ 𝐼 → ( 𝑥 ≠ 𝑦 → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) ) ) |
| 14 | 13 | imp4b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦 ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
| 15 | 12 14 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) → ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
| 16 | 15 | ralrimiv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 17 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 18 | 2 | subg0cl | ⊢ ( ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 19 | 17 18 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 0 ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 20 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 ∈ Grp ) |
| 21 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 22 | 21 | subgacs | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 23 | acsmre | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) | |
| 24 | 20 22 23 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 25 | imassrn | ⊢ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ran 𝑆 | |
| 26 | 6 | frnd | ⊢ ( 𝜑 → ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ran 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 28 | 25 27 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( SubGrp ‘ 𝐺 ) ) |
| 29 | mresspw | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) | |
| 30 | 24 29 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( SubGrp ‘ 𝐺 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 31 | 28 30 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 32 | sspwuni | ⊢ ( ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ↔ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) | |
| 33 | 31 32 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 34 | 3 | mrccl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ∧ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 35 | 24 33 34 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 36 | 2 | subg0cl | ⊢ ( ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 37 | 35 36 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 0 ∈ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) |
| 38 | 19 37 | elind | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 0 ∈ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 39 | 38 | snssd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 0 } ⊆ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) ) |
| 40 | 8 39 | eqssd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) |
| 41 | 16 40 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) |
| 42 | 41 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) |
| 43 | 6 | fdmd | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) |
| 44 | 1 2 3 | dmdprd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼 ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) |
| 45 | 5 43 44 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( 𝐾 ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { 0 } ) ) ) ) |
| 46 | 4 6 42 45 | mpbir3and | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) |