This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty family is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dprd0.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| Assertion | dprd0 | ⊢ ( 𝐺 ∈ Grp → ( 𝐺 dom DProd ∅ ∧ ( 𝐺 DProd ∅ ) = { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprd0.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | 0ex | ⊢ ∅ ∈ V | |
| 3 | 1 | dprdz | ⊢ ( ( 𝐺 ∈ Grp ∧ ∅ ∈ V ) → ( 𝐺 dom DProd ( 𝑥 ∈ ∅ ↦ { 0 } ) ∧ ( 𝐺 DProd ( 𝑥 ∈ ∅ ↦ { 0 } ) ) = { 0 } ) ) |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐺 ∈ Grp → ( 𝐺 dom DProd ( 𝑥 ∈ ∅ ↦ { 0 } ) ∧ ( 𝐺 DProd ( 𝑥 ∈ ∅ ↦ { 0 } ) ) = { 0 } ) ) |
| 5 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ { 0 } ) = ∅ | |
| 6 | 5 | breq2i | ⊢ ( 𝐺 dom DProd ( 𝑥 ∈ ∅ ↦ { 0 } ) ↔ 𝐺 dom DProd ∅ ) |
| 7 | 5 | oveq2i | ⊢ ( 𝐺 DProd ( 𝑥 ∈ ∅ ↦ { 0 } ) ) = ( 𝐺 DProd ∅ ) |
| 8 | 7 | eqeq1i | ⊢ ( ( 𝐺 DProd ( 𝑥 ∈ ∅ ↦ { 0 } ) ) = { 0 } ↔ ( 𝐺 DProd ∅ ) = { 0 } ) |
| 9 | 6 8 | anbi12i | ⊢ ( ( 𝐺 dom DProd ( 𝑥 ∈ ∅ ↦ { 0 } ) ∧ ( 𝐺 DProd ( 𝑥 ∈ ∅ ↦ { 0 } ) ) = { 0 } ) ↔ ( 𝐺 dom DProd ∅ ∧ ( 𝐺 DProd ∅ ) = { 0 } ) ) |
| 10 | 4 9 | sylib | ⊢ ( 𝐺 ∈ Grp → ( 𝐺 dom DProd ∅ ∧ ( 𝐺 DProd ∅ ) = { 0 } ) ) |