This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A family consisting entirely of trivial groups is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dprd0.0 | |- .0. = ( 0g ` G ) |
|
| Assertion | dprdz | |- ( ( G e. Grp /\ I e. V ) -> ( G dom DProd ( x e. I |-> { .0. } ) /\ ( G DProd ( x e. I |-> { .0. } ) ) = { .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprd0.0 | |- .0. = ( 0g ` G ) |
|
| 2 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 3 | eqid | |- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
|
| 4 | simpl | |- ( ( G e. Grp /\ I e. V ) -> G e. Grp ) |
|
| 5 | simpr | |- ( ( G e. Grp /\ I e. V ) -> I e. V ) |
|
| 6 | 1 | 0subg | |- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |
| 7 | 6 | ad2antrr | |- ( ( ( G e. Grp /\ I e. V ) /\ x e. I ) -> { .0. } e. ( SubGrp ` G ) ) |
| 8 | 7 | fmpttd | |- ( ( G e. Grp /\ I e. V ) -> ( x e. I |-> { .0. } ) : I --> ( SubGrp ` G ) ) |
| 9 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 10 | 9 1 | grpidcl | |- ( G e. Grp -> .0. e. ( Base ` G ) ) |
| 11 | 10 | adantr | |- ( ( G e. Grp /\ I e. V ) -> .0. e. ( Base ` G ) ) |
| 12 | 11 | snssd | |- ( ( G e. Grp /\ I e. V ) -> { .0. } C_ ( Base ` G ) ) |
| 13 | 9 2 | cntzsubg | |- ( ( G e. Grp /\ { .0. } C_ ( Base ` G ) ) -> ( ( Cntz ` G ) ` { .0. } ) e. ( SubGrp ` G ) ) |
| 14 | 12 13 | syldan | |- ( ( G e. Grp /\ I e. V ) -> ( ( Cntz ` G ) ` { .0. } ) e. ( SubGrp ` G ) ) |
| 15 | 1 | subg0cl | |- ( ( ( Cntz ` G ) ` { .0. } ) e. ( SubGrp ` G ) -> .0. e. ( ( Cntz ` G ) ` { .0. } ) ) |
| 16 | 14 15 | syl | |- ( ( G e. Grp /\ I e. V ) -> .0. e. ( ( Cntz ` G ) ` { .0. } ) ) |
| 17 | 16 | snssd | |- ( ( G e. Grp /\ I e. V ) -> { .0. } C_ ( ( Cntz ` G ) ` { .0. } ) ) |
| 18 | 17 | adantr | |- ( ( ( G e. Grp /\ I e. V ) /\ ( y e. I /\ z e. I /\ y =/= z ) ) -> { .0. } C_ ( ( Cntz ` G ) ` { .0. } ) ) |
| 19 | simpr1 | |- ( ( ( G e. Grp /\ I e. V ) /\ ( y e. I /\ z e. I /\ y =/= z ) ) -> y e. I ) |
|
| 20 | eqidd | |- ( x = y -> { .0. } = { .0. } ) |
|
| 21 | eqid | |- ( x e. I |-> { .0. } ) = ( x e. I |-> { .0. } ) |
|
| 22 | snex | |- { .0. } e. _V |
|
| 23 | 20 21 22 | fvmpt3i | |- ( y e. I -> ( ( x e. I |-> { .0. } ) ` y ) = { .0. } ) |
| 24 | 19 23 | syl | |- ( ( ( G e. Grp /\ I e. V ) /\ ( y e. I /\ z e. I /\ y =/= z ) ) -> ( ( x e. I |-> { .0. } ) ` y ) = { .0. } ) |
| 25 | simpr2 | |- ( ( ( G e. Grp /\ I e. V ) /\ ( y e. I /\ z e. I /\ y =/= z ) ) -> z e. I ) |
|
| 26 | eqidd | |- ( x = z -> { .0. } = { .0. } ) |
|
| 27 | 26 21 22 | fvmpt3i | |- ( z e. I -> ( ( x e. I |-> { .0. } ) ` z ) = { .0. } ) |
| 28 | 25 27 | syl | |- ( ( ( G e. Grp /\ I e. V ) /\ ( y e. I /\ z e. I /\ y =/= z ) ) -> ( ( x e. I |-> { .0. } ) ` z ) = { .0. } ) |
| 29 | 28 | fveq2d | |- ( ( ( G e. Grp /\ I e. V ) /\ ( y e. I /\ z e. I /\ y =/= z ) ) -> ( ( Cntz ` G ) ` ( ( x e. I |-> { .0. } ) ` z ) ) = ( ( Cntz ` G ) ` { .0. } ) ) |
| 30 | 18 24 29 | 3sstr4d | |- ( ( ( G e. Grp /\ I e. V ) /\ ( y e. I /\ z e. I /\ y =/= z ) ) -> ( ( x e. I |-> { .0. } ) ` y ) C_ ( ( Cntz ` G ) ` ( ( x e. I |-> { .0. } ) ` z ) ) ) |
| 31 | 23 | adantl | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( ( x e. I |-> { .0. } ) ` y ) = { .0. } ) |
| 32 | 31 | ineq1d | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( ( ( x e. I |-> { .0. } ) ` y ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) = ( { .0. } i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) ) |
| 33 | 9 | subgacs | |- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 34 | 33 | ad2antrr | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 35 | 34 | acsmred | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 36 | imassrn | |- ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) C_ ran ( x e. I |-> { .0. } ) |
|
| 37 | 8 | adantr | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( x e. I |-> { .0. } ) : I --> ( SubGrp ` G ) ) |
| 38 | 37 | frnd | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ran ( x e. I |-> { .0. } ) C_ ( SubGrp ` G ) ) |
| 39 | mresspw | |- ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
|
| 40 | 35 39 | syl | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( SubGrp ` G ) C_ ~P ( Base ` G ) ) |
| 41 | 38 40 | sstrd | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ran ( x e. I |-> { .0. } ) C_ ~P ( Base ` G ) ) |
| 42 | 36 41 | sstrid | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) C_ ~P ( Base ` G ) ) |
| 43 | sspwuni | |- ( ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) C_ ~P ( Base ` G ) <-> U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) C_ ( Base ` G ) ) |
|
| 44 | 42 43 | sylib | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) C_ ( Base ` G ) ) |
| 45 | 3 | mrccl | |- ( ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) /\ U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) C_ ( Base ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) e. ( SubGrp ` G ) ) |
| 46 | 35 44 45 | syl2anc | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) e. ( SubGrp ` G ) ) |
| 47 | 1 | subg0cl | |- ( ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) e. ( SubGrp ` G ) -> .0. e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) |
| 48 | 46 47 | syl | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> .0. e. ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) |
| 49 | 48 | snssd | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> { .0. } C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) |
| 50 | dfss2 | |- ( { .0. } C_ ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) <-> ( { .0. } i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) = { .0. } ) |
|
| 51 | 49 50 | sylib | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( { .0. } i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) = { .0. } ) |
| 52 | 32 51 | eqtrd | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( ( ( x e. I |-> { .0. } ) ` y ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) = { .0. } ) |
| 53 | eqimss | |- ( ( ( ( x e. I |-> { .0. } ) ` y ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) = { .0. } -> ( ( ( x e. I |-> { .0. } ) ` y ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) C_ { .0. } ) |
|
| 54 | 52 53 | syl | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( ( ( x e. I |-> { .0. } ) ` y ) i^i ( ( mrCls ` ( SubGrp ` G ) ) ` U. ( ( x e. I |-> { .0. } ) " ( I \ { y } ) ) ) ) C_ { .0. } ) |
| 55 | 2 1 3 4 5 8 30 54 | dmdprdd | |- ( ( G e. Grp /\ I e. V ) -> G dom DProd ( x e. I |-> { .0. } ) ) |
| 56 | 21 7 | dmmptd | |- ( ( G e. Grp /\ I e. V ) -> dom ( x e. I |-> { .0. } ) = I ) |
| 57 | 6 | adantr | |- ( ( G e. Grp /\ I e. V ) -> { .0. } e. ( SubGrp ` G ) ) |
| 58 | eqimss | |- ( ( ( x e. I |-> { .0. } ) ` y ) = { .0. } -> ( ( x e. I |-> { .0. } ) ` y ) C_ { .0. } ) |
|
| 59 | 31 58 | syl | |- ( ( ( G e. Grp /\ I e. V ) /\ y e. I ) -> ( ( x e. I |-> { .0. } ) ` y ) C_ { .0. } ) |
| 60 | 55 56 57 59 | dprdlub | |- ( ( G e. Grp /\ I e. V ) -> ( G DProd ( x e. I |-> { .0. } ) ) C_ { .0. } ) |
| 61 | dprdsubg | |- ( G dom DProd ( x e. I |-> { .0. } ) -> ( G DProd ( x e. I |-> { .0. } ) ) e. ( SubGrp ` G ) ) |
|
| 62 | 1 | subg0cl | |- ( ( G DProd ( x e. I |-> { .0. } ) ) e. ( SubGrp ` G ) -> .0. e. ( G DProd ( x e. I |-> { .0. } ) ) ) |
| 63 | 55 61 62 | 3syl | |- ( ( G e. Grp /\ I e. V ) -> .0. e. ( G DProd ( x e. I |-> { .0. } ) ) ) |
| 64 | 63 | snssd | |- ( ( G e. Grp /\ I e. V ) -> { .0. } C_ ( G DProd ( x e. I |-> { .0. } ) ) ) |
| 65 | 60 64 | eqssd | |- ( ( G e. Grp /\ I e. V ) -> ( G DProd ( x e. I |-> { .0. } ) ) = { .0. } ) |
| 66 | 55 65 | jca | |- ( ( G e. Grp /\ I e. V ) -> ( G dom DProd ( x e. I |-> { .0. } ) /\ ( G DProd ( x e. I |-> { .0. } ) ) = { .0. } ) ) |