This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of Enderton p. 143. (Contributed by NM, 27-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dju0en | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ⊔ ∅ ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | in0 | ⊢ ( 𝐴 ∩ ∅ ) = ∅ | |
| 3 | endjudisj | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∅ ∈ V ∧ ( 𝐴 ∩ ∅ ) = ∅ ) → ( 𝐴 ⊔ ∅ ) ≈ ( 𝐴 ∪ ∅ ) ) | |
| 4 | 1 2 3 | mp3an23 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ⊔ ∅ ) ≈ ( 𝐴 ∪ ∅ ) ) |
| 5 | un0 | ⊢ ( 𝐴 ∪ ∅ ) = 𝐴 | |
| 6 | 4 5 | breqtrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ⊔ ∅ ) ≈ 𝐴 ) |