This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is idempotent under cardinal sum and B is dominated by the power set of A , then so is the cardinal sum of A and B . (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djulepw | |- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( A |_| B ) ~<_ ~P A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djueq1 | |- ( A = (/) -> ( A |_| B ) = ( (/) |_| B ) ) |
|
| 2 | 1 | breq1d | |- ( A = (/) -> ( ( A |_| B ) ~<_ ~P A <-> ( (/) |_| B ) ~<_ ~P A ) ) |
| 3 | relen | |- Rel ~~ |
|
| 4 | 3 | brrelex2i | |- ( ( A |_| A ) ~~ A -> A e. _V ) |
| 5 | 4 | adantr | |- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> A e. _V ) |
| 6 | canth2g | |- ( A e. _V -> A ~< ~P A ) |
|
| 7 | sdomdom | |- ( A ~< ~P A -> A ~<_ ~P A ) |
|
| 8 | 5 6 7 | 3syl | |- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> A ~<_ ~P A ) |
| 9 | simpr | |- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> B ~<_ ~P A ) |
|
| 10 | reldom | |- Rel ~<_ |
|
| 11 | 10 | brrelex1i | |- ( B ~<_ ~P A -> B e. _V ) |
| 12 | djudom1 | |- ( ( A ~<_ ~P A /\ B e. _V ) -> ( A |_| B ) ~<_ ( ~P A |_| B ) ) |
|
| 13 | 11 12 | sylan2 | |- ( ( A ~<_ ~P A /\ B ~<_ ~P A ) -> ( A |_| B ) ~<_ ( ~P A |_| B ) ) |
| 14 | simpr | |- ( ( A ~<_ ~P A /\ B ~<_ ~P A ) -> B ~<_ ~P A ) |
|
| 15 | 10 | brrelex2i | |- ( B ~<_ ~P A -> ~P A e. _V ) |
| 16 | djudom2 | |- ( ( B ~<_ ~P A /\ ~P A e. _V ) -> ( ~P A |_| B ) ~<_ ( ~P A |_| ~P A ) ) |
|
| 17 | 14 15 16 | syl2anc2 | |- ( ( A ~<_ ~P A /\ B ~<_ ~P A ) -> ( ~P A |_| B ) ~<_ ( ~P A |_| ~P A ) ) |
| 18 | domtr | |- ( ( ( A |_| B ) ~<_ ( ~P A |_| B ) /\ ( ~P A |_| B ) ~<_ ( ~P A |_| ~P A ) ) -> ( A |_| B ) ~<_ ( ~P A |_| ~P A ) ) |
|
| 19 | 13 17 18 | syl2anc | |- ( ( A ~<_ ~P A /\ B ~<_ ~P A ) -> ( A |_| B ) ~<_ ( ~P A |_| ~P A ) ) |
| 20 | 8 9 19 | syl2anc | |- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( A |_| B ) ~<_ ( ~P A |_| ~P A ) ) |
| 21 | pwdju1 | |- ( A e. _V -> ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) |
|
| 22 | 5 21 | syl | |- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) |
| 23 | domentr | |- ( ( ( A |_| B ) ~<_ ( ~P A |_| ~P A ) /\ ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) -> ( A |_| B ) ~<_ ~P ( A |_| 1o ) ) |
|
| 24 | 20 22 23 | syl2anc | |- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( A |_| B ) ~<_ ~P ( A |_| 1o ) ) |
| 25 | 24 | adantr | |- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> ( A |_| B ) ~<_ ~P ( A |_| 1o ) ) |
| 26 | 0sdomg | |- ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) |
|
| 27 | 5 26 | syl | |- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( (/) ~< A <-> A =/= (/) ) ) |
| 28 | 27 | biimpar | |- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> (/) ~< A ) |
| 29 | 0sdom1dom | |- ( (/) ~< A <-> 1o ~<_ A ) |
|
| 30 | 28 29 | sylib | |- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> 1o ~<_ A ) |
| 31 | 5 | adantr | |- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> A e. _V ) |
| 32 | djudom2 | |- ( ( 1o ~<_ A /\ A e. _V ) -> ( A |_| 1o ) ~<_ ( A |_| A ) ) |
|
| 33 | 30 31 32 | syl2anc | |- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> ( A |_| 1o ) ~<_ ( A |_| A ) ) |
| 34 | simpll | |- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> ( A |_| A ) ~~ A ) |
|
| 35 | domentr | |- ( ( ( A |_| 1o ) ~<_ ( A |_| A ) /\ ( A |_| A ) ~~ A ) -> ( A |_| 1o ) ~<_ A ) |
|
| 36 | 33 34 35 | syl2anc | |- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> ( A |_| 1o ) ~<_ A ) |
| 37 | pwdom | |- ( ( A |_| 1o ) ~<_ A -> ~P ( A |_| 1o ) ~<_ ~P A ) |
|
| 38 | 36 37 | syl | |- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> ~P ( A |_| 1o ) ~<_ ~P A ) |
| 39 | domtr | |- ( ( ( A |_| B ) ~<_ ~P ( A |_| 1o ) /\ ~P ( A |_| 1o ) ~<_ ~P A ) -> ( A |_| B ) ~<_ ~P A ) |
|
| 40 | 25 38 39 | syl2anc | |- ( ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A =/= (/) ) -> ( A |_| B ) ~<_ ~P A ) |
| 41 | 0ex | |- (/) e. _V |
|
| 42 | 11 | adantl | |- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> B e. _V ) |
| 43 | djucomen | |- ( ( (/) e. _V /\ B e. _V ) -> ( (/) |_| B ) ~~ ( B |_| (/) ) ) |
|
| 44 | 41 42 43 | sylancr | |- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( (/) |_| B ) ~~ ( B |_| (/) ) ) |
| 45 | dju0en | |- ( B e. _V -> ( B |_| (/) ) ~~ B ) |
|
| 46 | domen1 | |- ( ( B |_| (/) ) ~~ B -> ( ( B |_| (/) ) ~<_ ~P A <-> B ~<_ ~P A ) ) |
|
| 47 | 42 45 46 | 3syl | |- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( ( B |_| (/) ) ~<_ ~P A <-> B ~<_ ~P A ) ) |
| 48 | 9 47 | mpbird | |- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( B |_| (/) ) ~<_ ~P A ) |
| 49 | endomtr | |- ( ( ( (/) |_| B ) ~~ ( B |_| (/) ) /\ ( B |_| (/) ) ~<_ ~P A ) -> ( (/) |_| B ) ~<_ ~P A ) |
|
| 50 | 44 48 49 | syl2anc | |- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( (/) |_| B ) ~<_ ~P A ) |
| 51 | 2 40 50 | pm2.61ne | |- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( A |_| B ) ~<_ ~P A ) |