This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinal and ordinal sums are always equinumerous. (Contributed by Mario Carneiro, 6-Feb-2013) (Revised by Jim Kingdon, 7-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onadju | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ≈ ( 𝐴 ⊔ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg | ⊢ ( 𝐴 ∈ On → 𝐴 ≈ 𝐴 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ≈ 𝐴 ) |
| 3 | simpr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐵 ∈ On ) | |
| 4 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) | |
| 5 | 4 | oacomf1olem | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) : 𝐵 –1-1-onto→ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ∧ ( ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ∩ 𝐴 ) = ∅ ) ) |
| 6 | 5 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) : 𝐵 –1-1-onto→ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ∧ ( ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ∩ 𝐴 ) = ∅ ) ) |
| 7 | 6 | simpld | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) : 𝐵 –1-1-onto→ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 8 | f1oeng | ⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) : 𝐵 –1-1-onto→ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) → 𝐵 ≈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) | |
| 9 | 3 7 8 | syl2anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐵 ≈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) |
| 10 | incom | ⊢ ( 𝐴 ∩ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) = ( ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ∩ 𝐴 ) | |
| 11 | 6 | simprd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ∩ 𝐴 ) = ∅ ) |
| 12 | 10 11 | eqtrid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∩ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) = ∅ ) |
| 13 | djuenun | ⊢ ( ( 𝐴 ≈ 𝐴 ∧ 𝐵 ≈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ∧ ( 𝐴 ∩ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) = ∅ ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) | |
| 14 | 2 9 12 13 | syl3anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) |
| 15 | oarec | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) = ( 𝐴 ∪ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 +o 𝑥 ) ) ) ) | |
| 16 | 14 15 | breqtrrd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 +o 𝐵 ) ) |
| 17 | 16 | ensymd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o 𝐵 ) ≈ ( 𝐴 ⊔ 𝐵 ) ) |