This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A discrete space is second-countable iff it is countable. (Contributed by Mario Carneiro, 13-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dis2ndc | ⊢ ( 𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctex | ⊢ ( 𝑋 ≼ ω → 𝑋 ∈ V ) | |
| 2 | pwexr | ⊢ ( 𝒫 𝑋 ∈ 2ndω → 𝑋 ∈ V ) | |
| 3 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 4 | 3 | 2a1i | ⊢ ( 𝑋 ∈ V → ( 𝑥 ∈ 𝑋 → { 𝑥 } ∈ V ) ) |
| 5 | vex | ⊢ 𝑥 ∈ V | |
| 6 | 5 | sneqr | ⊢ ( { 𝑥 } = { 𝑦 } → 𝑥 = 𝑦 ) |
| 7 | sneq | ⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) | |
| 8 | 6 7 | impbii | ⊢ ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑦 ) |
| 9 | 8 | 2a1i | ⊢ ( 𝑋 ∈ V → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑦 ) ) ) |
| 10 | 4 9 | dom2lem | ⊢ ( 𝑋 ∈ V → ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) : 𝑋 –1-1→ V ) |
| 11 | f1f1orn | ⊢ ( ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) : 𝑋 –1-1→ V → ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) : 𝑋 –1-1-onto→ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑋 ∈ V → ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) : 𝑋 –1-1-onto→ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) |
| 13 | f1oeng | ⊢ ( ( 𝑋 ∈ V ∧ ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) : 𝑋 –1-1-onto→ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) → 𝑋 ≈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) | |
| 14 | 12 13 | mpdan | ⊢ ( 𝑋 ∈ V → 𝑋 ≈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) |
| 15 | domen1 | ⊢ ( 𝑋 ≈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) → ( 𝑋 ≼ ω ↔ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝑋 ∈ V → ( 𝑋 ≼ ω ↔ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) ) |
| 17 | distop | ⊢ ( 𝑋 ∈ V → 𝒫 𝑋 ∈ Top ) | |
| 18 | simpr | ⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 19 | 5 | snelpw | ⊢ ( 𝑥 ∈ 𝑋 ↔ { 𝑥 } ∈ 𝒫 𝑋 ) |
| 20 | 18 19 | sylib | ⊢ ( ( 𝑋 ∈ V ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ∈ 𝒫 𝑋 ) |
| 21 | 20 | fmpttd | ⊢ ( 𝑋 ∈ V → ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) : 𝑋 ⟶ 𝒫 𝑋 ) |
| 22 | 21 | frnd | ⊢ ( 𝑋 ∈ V → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ⊆ 𝒫 𝑋 ) |
| 23 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋 ) | |
| 24 | 23 | ad2antrl | ⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → 𝑦 ⊆ 𝑋 ) |
| 25 | simprr | ⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → 𝑧 ∈ 𝑦 ) | |
| 26 | 24 25 | sseldd | ⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → 𝑧 ∈ 𝑋 ) |
| 27 | eqidd | ⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → { 𝑧 } = { 𝑧 } ) | |
| 28 | sneq | ⊢ ( 𝑥 = 𝑧 → { 𝑥 } = { 𝑧 } ) | |
| 29 | 28 | rspceeqv | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ { 𝑧 } = { 𝑧 } ) → ∃ 𝑥 ∈ 𝑋 { 𝑧 } = { 𝑥 } ) |
| 30 | 26 27 29 | syl2anc | ⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → ∃ 𝑥 ∈ 𝑋 { 𝑧 } = { 𝑥 } ) |
| 31 | vsnex | ⊢ { 𝑧 } ∈ V | |
| 32 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) = ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) | |
| 33 | 32 | elrnmpt | ⊢ ( { 𝑧 } ∈ V → ( { 𝑧 } ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝑋 { 𝑧 } = { 𝑥 } ) ) |
| 34 | 31 33 | ax-mp | ⊢ ( { 𝑧 } ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝑋 { 𝑧 } = { 𝑥 } ) |
| 35 | 30 34 | sylibr | ⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → { 𝑧 } ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) |
| 36 | vsnid | ⊢ 𝑧 ∈ { 𝑧 } | |
| 37 | 36 | a1i | ⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → 𝑧 ∈ { 𝑧 } ) |
| 38 | 25 | snssd | ⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → { 𝑧 } ⊆ 𝑦 ) |
| 39 | eleq2 | ⊢ ( 𝑤 = { 𝑧 } → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ { 𝑧 } ) ) | |
| 40 | sseq1 | ⊢ ( 𝑤 = { 𝑧 } → ( 𝑤 ⊆ 𝑦 ↔ { 𝑧 } ⊆ 𝑦 ) ) | |
| 41 | 39 40 | anbi12d | ⊢ ( 𝑤 = { 𝑧 } → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ↔ ( 𝑧 ∈ { 𝑧 } ∧ { 𝑧 } ⊆ 𝑦 ) ) ) |
| 42 | 41 | rspcev | ⊢ ( ( { 𝑧 } ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ∧ ( 𝑧 ∈ { 𝑧 } ∧ { 𝑧 } ⊆ 𝑦 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) |
| 43 | 35 37 38 42 | syl12anc | ⊢ ( ( 𝑋 ∈ V ∧ ( 𝑦 ∈ 𝒫 𝑋 ∧ 𝑧 ∈ 𝑦 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) |
| 44 | 43 | ralrimivva | ⊢ ( 𝑋 ∈ V → ∀ 𝑦 ∈ 𝒫 𝑋 ∀ 𝑧 ∈ 𝑦 ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) |
| 45 | basgen2 | ⊢ ( ( 𝒫 𝑋 ∈ Top ∧ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ⊆ 𝒫 𝑋 ∧ ∀ 𝑦 ∈ 𝒫 𝑋 ∀ 𝑧 ∈ 𝑦 ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) = 𝒫 𝑋 ) | |
| 46 | 17 22 44 45 | syl3anc | ⊢ ( 𝑋 ∈ V → ( topGen ‘ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) = 𝒫 𝑋 ) |
| 47 | 46 | adantr | ⊢ ( ( 𝑋 ∈ V ∧ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) = 𝒫 𝑋 ) |
| 48 | 46 17 | eqeltrd | ⊢ ( 𝑋 ∈ V → ( topGen ‘ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) ∈ Top ) |
| 49 | tgclb | ⊢ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ∈ TopBases ↔ ( topGen ‘ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) ∈ Top ) | |
| 50 | 48 49 | sylibr | ⊢ ( 𝑋 ∈ V → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ∈ TopBases ) |
| 51 | 2ndci | ⊢ ( ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ∈ TopBases ∧ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) ∈ 2ndω ) | |
| 52 | 50 51 | sylan | ⊢ ( ( 𝑋 ∈ V ∧ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ) ∈ 2ndω ) |
| 53 | 47 52 | eqeltrrd | ⊢ ( ( 𝑋 ∈ V ∧ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) → 𝒫 𝑋 ∈ 2ndω ) |
| 54 | is2ndc | ⊢ ( 𝒫 𝑋 ∈ 2ndω ↔ ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) | |
| 55 | vex | ⊢ 𝑏 ∈ V | |
| 56 | simpr | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 57 | 56 19 | sylib | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ∈ 𝒫 𝑋 ) |
| 58 | simplrr | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) | |
| 59 | 57 58 | eleqtrrd | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ∈ ( topGen ‘ 𝑏 ) ) |
| 60 | vsnid | ⊢ 𝑥 ∈ { 𝑥 } | |
| 61 | tg2 | ⊢ ( ( { 𝑥 } ∈ ( topGen ‘ 𝑏 ) ∧ 𝑥 ∈ { 𝑥 } ) → ∃ 𝑦 ∈ 𝑏 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ { 𝑥 } ) ) | |
| 62 | 59 60 61 | sylancl | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑏 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ { 𝑥 } ) ) |
| 63 | simprrl | ⊢ ( ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑏 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ { 𝑥 } ) ) ) → 𝑥 ∈ 𝑦 ) | |
| 64 | 63 | snssd | ⊢ ( ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑏 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ { 𝑥 } ) ) ) → { 𝑥 } ⊆ 𝑦 ) |
| 65 | simprrr | ⊢ ( ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑏 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ { 𝑥 } ) ) ) → 𝑦 ⊆ { 𝑥 } ) | |
| 66 | 64 65 | eqssd | ⊢ ( ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑏 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ { 𝑥 } ) ) ) → { 𝑥 } = 𝑦 ) |
| 67 | simprl | ⊢ ( ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑏 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ { 𝑥 } ) ) ) → 𝑦 ∈ 𝑏 ) | |
| 68 | 66 67 | eqeltrd | ⊢ ( ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑏 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ { 𝑥 } ) ) ) → { 𝑥 } ∈ 𝑏 ) |
| 69 | 62 68 | rexlimddv | ⊢ ( ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ∈ 𝑏 ) |
| 70 | 69 | fmpttd | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) → ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) : 𝑋 ⟶ 𝑏 ) |
| 71 | 70 | frnd | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ⊆ 𝑏 ) |
| 72 | ssdomg | ⊢ ( 𝑏 ∈ V → ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ⊆ 𝑏 → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ 𝑏 ) ) | |
| 73 | 55 71 72 | mpsyl | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ 𝑏 ) |
| 74 | simprl | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) → 𝑏 ≼ ω ) | |
| 75 | domtr | ⊢ ( ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ 𝑏 ∧ 𝑏 ≼ ω ) → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) | |
| 76 | 73 74 75 | syl2anc | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) ) → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) |
| 77 | 76 | rexlimdva2 | ⊢ ( 𝑋 ∈ V → ( ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝒫 𝑋 ) → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) ) |
| 78 | 54 77 | biimtrid | ⊢ ( 𝑋 ∈ V → ( 𝒫 𝑋 ∈ 2ndω → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) ) |
| 79 | 78 | imp | ⊢ ( ( 𝑋 ∈ V ∧ 𝒫 𝑋 ∈ 2ndω ) → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ) |
| 80 | 53 79 | impbida | ⊢ ( 𝑋 ∈ V → ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑥 } ) ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω ) ) |
| 81 | 16 80 | bitrd | ⊢ ( 𝑋 ∈ V → ( 𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω ) ) |
| 82 | 1 2 81 | pm5.21nii | ⊢ ( 𝑋 ≼ ω ↔ 𝒫 𝑋 ∈ 2ndω ) |