This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A discrete space is second-countable iff it is countable. (Contributed by Mario Carneiro, 13-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dis2ndc | |- ( X ~<_ _om <-> ~P X e. 2ndc ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctex | |- ( X ~<_ _om -> X e. _V ) |
|
| 2 | pwexr | |- ( ~P X e. 2ndc -> X e. _V ) |
|
| 3 | vsnex | |- { x } e. _V |
|
| 4 | 3 | 2a1i | |- ( X e. _V -> ( x e. X -> { x } e. _V ) ) |
| 5 | vex | |- x e. _V |
|
| 6 | 5 | sneqr | |- ( { x } = { y } -> x = y ) |
| 7 | sneq | |- ( x = y -> { x } = { y } ) |
|
| 8 | 6 7 | impbii | |- ( { x } = { y } <-> x = y ) |
| 9 | 8 | 2a1i | |- ( X e. _V -> ( ( x e. X /\ y e. X ) -> ( { x } = { y } <-> x = y ) ) ) |
| 10 | 4 9 | dom2lem | |- ( X e. _V -> ( x e. X |-> { x } ) : X -1-1-> _V ) |
| 11 | f1f1orn | |- ( ( x e. X |-> { x } ) : X -1-1-> _V -> ( x e. X |-> { x } ) : X -1-1-onto-> ran ( x e. X |-> { x } ) ) |
|
| 12 | 10 11 | syl | |- ( X e. _V -> ( x e. X |-> { x } ) : X -1-1-onto-> ran ( x e. X |-> { x } ) ) |
| 13 | f1oeng | |- ( ( X e. _V /\ ( x e. X |-> { x } ) : X -1-1-onto-> ran ( x e. X |-> { x } ) ) -> X ~~ ran ( x e. X |-> { x } ) ) |
|
| 14 | 12 13 | mpdan | |- ( X e. _V -> X ~~ ran ( x e. X |-> { x } ) ) |
| 15 | domen1 | |- ( X ~~ ran ( x e. X |-> { x } ) -> ( X ~<_ _om <-> ran ( x e. X |-> { x } ) ~<_ _om ) ) |
|
| 16 | 14 15 | syl | |- ( X e. _V -> ( X ~<_ _om <-> ran ( x e. X |-> { x } ) ~<_ _om ) ) |
| 17 | distop | |- ( X e. _V -> ~P X e. Top ) |
|
| 18 | simpr | |- ( ( X e. _V /\ x e. X ) -> x e. X ) |
|
| 19 | 5 | snelpw | |- ( x e. X <-> { x } e. ~P X ) |
| 20 | 18 19 | sylib | |- ( ( X e. _V /\ x e. X ) -> { x } e. ~P X ) |
| 21 | 20 | fmpttd | |- ( X e. _V -> ( x e. X |-> { x } ) : X --> ~P X ) |
| 22 | 21 | frnd | |- ( X e. _V -> ran ( x e. X |-> { x } ) C_ ~P X ) |
| 23 | elpwi | |- ( y e. ~P X -> y C_ X ) |
|
| 24 | 23 | ad2antrl | |- ( ( X e. _V /\ ( y e. ~P X /\ z e. y ) ) -> y C_ X ) |
| 25 | simprr | |- ( ( X e. _V /\ ( y e. ~P X /\ z e. y ) ) -> z e. y ) |
|
| 26 | 24 25 | sseldd | |- ( ( X e. _V /\ ( y e. ~P X /\ z e. y ) ) -> z e. X ) |
| 27 | eqidd | |- ( ( X e. _V /\ ( y e. ~P X /\ z e. y ) ) -> { z } = { z } ) |
|
| 28 | sneq | |- ( x = z -> { x } = { z } ) |
|
| 29 | 28 | rspceeqv | |- ( ( z e. X /\ { z } = { z } ) -> E. x e. X { z } = { x } ) |
| 30 | 26 27 29 | syl2anc | |- ( ( X e. _V /\ ( y e. ~P X /\ z e. y ) ) -> E. x e. X { z } = { x } ) |
| 31 | vsnex | |- { z } e. _V |
|
| 32 | eqid | |- ( x e. X |-> { x } ) = ( x e. X |-> { x } ) |
|
| 33 | 32 | elrnmpt | |- ( { z } e. _V -> ( { z } e. ran ( x e. X |-> { x } ) <-> E. x e. X { z } = { x } ) ) |
| 34 | 31 33 | ax-mp | |- ( { z } e. ran ( x e. X |-> { x } ) <-> E. x e. X { z } = { x } ) |
| 35 | 30 34 | sylibr | |- ( ( X e. _V /\ ( y e. ~P X /\ z e. y ) ) -> { z } e. ran ( x e. X |-> { x } ) ) |
| 36 | vsnid | |- z e. { z } |
|
| 37 | 36 | a1i | |- ( ( X e. _V /\ ( y e. ~P X /\ z e. y ) ) -> z e. { z } ) |
| 38 | 25 | snssd | |- ( ( X e. _V /\ ( y e. ~P X /\ z e. y ) ) -> { z } C_ y ) |
| 39 | eleq2 | |- ( w = { z } -> ( z e. w <-> z e. { z } ) ) |
|
| 40 | sseq1 | |- ( w = { z } -> ( w C_ y <-> { z } C_ y ) ) |
|
| 41 | 39 40 | anbi12d | |- ( w = { z } -> ( ( z e. w /\ w C_ y ) <-> ( z e. { z } /\ { z } C_ y ) ) ) |
| 42 | 41 | rspcev | |- ( ( { z } e. ran ( x e. X |-> { x } ) /\ ( z e. { z } /\ { z } C_ y ) ) -> E. w e. ran ( x e. X |-> { x } ) ( z e. w /\ w C_ y ) ) |
| 43 | 35 37 38 42 | syl12anc | |- ( ( X e. _V /\ ( y e. ~P X /\ z e. y ) ) -> E. w e. ran ( x e. X |-> { x } ) ( z e. w /\ w C_ y ) ) |
| 44 | 43 | ralrimivva | |- ( X e. _V -> A. y e. ~P X A. z e. y E. w e. ran ( x e. X |-> { x } ) ( z e. w /\ w C_ y ) ) |
| 45 | basgen2 | |- ( ( ~P X e. Top /\ ran ( x e. X |-> { x } ) C_ ~P X /\ A. y e. ~P X A. z e. y E. w e. ran ( x e. X |-> { x } ) ( z e. w /\ w C_ y ) ) -> ( topGen ` ran ( x e. X |-> { x } ) ) = ~P X ) |
|
| 46 | 17 22 44 45 | syl3anc | |- ( X e. _V -> ( topGen ` ran ( x e. X |-> { x } ) ) = ~P X ) |
| 47 | 46 | adantr | |- ( ( X e. _V /\ ran ( x e. X |-> { x } ) ~<_ _om ) -> ( topGen ` ran ( x e. X |-> { x } ) ) = ~P X ) |
| 48 | 46 17 | eqeltrd | |- ( X e. _V -> ( topGen ` ran ( x e. X |-> { x } ) ) e. Top ) |
| 49 | tgclb | |- ( ran ( x e. X |-> { x } ) e. TopBases <-> ( topGen ` ran ( x e. X |-> { x } ) ) e. Top ) |
|
| 50 | 48 49 | sylibr | |- ( X e. _V -> ran ( x e. X |-> { x } ) e. TopBases ) |
| 51 | 2ndci | |- ( ( ran ( x e. X |-> { x } ) e. TopBases /\ ran ( x e. X |-> { x } ) ~<_ _om ) -> ( topGen ` ran ( x e. X |-> { x } ) ) e. 2ndc ) |
|
| 52 | 50 51 | sylan | |- ( ( X e. _V /\ ran ( x e. X |-> { x } ) ~<_ _om ) -> ( topGen ` ran ( x e. X |-> { x } ) ) e. 2ndc ) |
| 53 | 47 52 | eqeltrrd | |- ( ( X e. _V /\ ran ( x e. X |-> { x } ) ~<_ _om ) -> ~P X e. 2ndc ) |
| 54 | is2ndc | |- ( ~P X e. 2ndc <-> E. b e. TopBases ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) |
|
| 55 | vex | |- b e. _V |
|
| 56 | simpr | |- ( ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) /\ x e. X ) -> x e. X ) |
|
| 57 | 56 19 | sylib | |- ( ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) /\ x e. X ) -> { x } e. ~P X ) |
| 58 | simplrr | |- ( ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) /\ x e. X ) -> ( topGen ` b ) = ~P X ) |
|
| 59 | 57 58 | eleqtrrd | |- ( ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) /\ x e. X ) -> { x } e. ( topGen ` b ) ) |
| 60 | vsnid | |- x e. { x } |
|
| 61 | tg2 | |- ( ( { x } e. ( topGen ` b ) /\ x e. { x } ) -> E. y e. b ( x e. y /\ y C_ { x } ) ) |
|
| 62 | 59 60 61 | sylancl | |- ( ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) /\ x e. X ) -> E. y e. b ( x e. y /\ y C_ { x } ) ) |
| 63 | simprrl | |- ( ( ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) /\ x e. X ) /\ ( y e. b /\ ( x e. y /\ y C_ { x } ) ) ) -> x e. y ) |
|
| 64 | 63 | snssd | |- ( ( ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) /\ x e. X ) /\ ( y e. b /\ ( x e. y /\ y C_ { x } ) ) ) -> { x } C_ y ) |
| 65 | simprrr | |- ( ( ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) /\ x e. X ) /\ ( y e. b /\ ( x e. y /\ y C_ { x } ) ) ) -> y C_ { x } ) |
|
| 66 | 64 65 | eqssd | |- ( ( ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) /\ x e. X ) /\ ( y e. b /\ ( x e. y /\ y C_ { x } ) ) ) -> { x } = y ) |
| 67 | simprl | |- ( ( ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) /\ x e. X ) /\ ( y e. b /\ ( x e. y /\ y C_ { x } ) ) ) -> y e. b ) |
|
| 68 | 66 67 | eqeltrd | |- ( ( ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) /\ x e. X ) /\ ( y e. b /\ ( x e. y /\ y C_ { x } ) ) ) -> { x } e. b ) |
| 69 | 62 68 | rexlimddv | |- ( ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) /\ x e. X ) -> { x } e. b ) |
| 70 | 69 | fmpttd | |- ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) -> ( x e. X |-> { x } ) : X --> b ) |
| 71 | 70 | frnd | |- ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) -> ran ( x e. X |-> { x } ) C_ b ) |
| 72 | ssdomg | |- ( b e. _V -> ( ran ( x e. X |-> { x } ) C_ b -> ran ( x e. X |-> { x } ) ~<_ b ) ) |
|
| 73 | 55 71 72 | mpsyl | |- ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) -> ran ( x e. X |-> { x } ) ~<_ b ) |
| 74 | simprl | |- ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) -> b ~<_ _om ) |
|
| 75 | domtr | |- ( ( ran ( x e. X |-> { x } ) ~<_ b /\ b ~<_ _om ) -> ran ( x e. X |-> { x } ) ~<_ _om ) |
|
| 76 | 73 74 75 | syl2anc | |- ( ( ( X e. _V /\ b e. TopBases ) /\ ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) ) -> ran ( x e. X |-> { x } ) ~<_ _om ) |
| 77 | 76 | rexlimdva2 | |- ( X e. _V -> ( E. b e. TopBases ( b ~<_ _om /\ ( topGen ` b ) = ~P X ) -> ran ( x e. X |-> { x } ) ~<_ _om ) ) |
| 78 | 54 77 | biimtrid | |- ( X e. _V -> ( ~P X e. 2ndc -> ran ( x e. X |-> { x } ) ~<_ _om ) ) |
| 79 | 78 | imp | |- ( ( X e. _V /\ ~P X e. 2ndc ) -> ran ( x e. X |-> { x } ) ~<_ _om ) |
| 80 | 53 79 | impbida | |- ( X e. _V -> ( ran ( x e. X |-> { x } ) ~<_ _om <-> ~P X e. 2ndc ) ) |
| 81 | 16 80 | bitrd | |- ( X e. _V -> ( X ~<_ _om <-> ~P X e. 2ndc ) ) |
| 82 | 1 2 81 | pm5.21nii | |- ( X ~<_ _om <-> ~P X e. 2ndc ) |