This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A polynomial is constant (i.e. a "lifted scalar") iff all but the first coefficient are zero. (Contributed by AV, 16-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cply1coe0.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| cply1coe0.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| cply1coe0.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| cply1coe0.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| cply1coe0.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| Assertion | cply1coe0bi | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ 𝐾 𝑀 = ( 𝐴 ‘ 𝑠 ) ↔ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cply1coe0.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 2 | cply1coe0.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | cply1coe0.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 4 | cply1coe0.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | cply1coe0.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 6 | 1 2 3 4 5 | cply1coe0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑠 ∈ 𝐾 ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝐴 ‘ 𝑠 ) ) ‘ 𝑛 ) = 0 ) |
| 7 | 6 | ad4ant13 | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐾 ) ∧ 𝑀 = ( 𝐴 ‘ 𝑠 ) ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝐴 ‘ 𝑠 ) ) ‘ 𝑛 ) = 0 ) |
| 8 | fveq2 | ⊢ ( 𝑀 = ( 𝐴 ‘ 𝑠 ) → ( coe1 ‘ 𝑀 ) = ( coe1 ‘ ( 𝐴 ‘ 𝑠 ) ) ) | |
| 9 | 8 | fveq1d | ⊢ ( 𝑀 = ( 𝐴 ‘ 𝑠 ) → ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ 𝑠 ) ) ‘ 𝑛 ) ) |
| 10 | 9 | eqeq1d | ⊢ ( 𝑀 = ( 𝐴 ‘ 𝑠 ) → ( ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ↔ ( ( coe1 ‘ ( 𝐴 ‘ 𝑠 ) ) ‘ 𝑛 ) = 0 ) ) |
| 11 | 10 | ralbidv | ⊢ ( 𝑀 = ( 𝐴 ‘ 𝑠 ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ↔ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝐴 ‘ 𝑠 ) ) ‘ 𝑛 ) = 0 ) ) |
| 12 | 11 | adantl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐾 ) ∧ 𝑀 = ( 𝐴 ‘ 𝑠 ) ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ↔ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝐴 ‘ 𝑠 ) ) ‘ 𝑛 ) = 0 ) ) |
| 13 | 7 12 | mpbird | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐾 ) ∧ 𝑀 = ( 𝐴 ‘ 𝑠 ) ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) |
| 14 | 13 | rexlimdva2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ 𝐾 𝑀 = ( 𝐴 ‘ 𝑠 ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) ) |
| 15 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) | |
| 16 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 17 | eqid | ⊢ ( coe1 ‘ 𝑀 ) = ( coe1 ‘ 𝑀 ) | |
| 18 | 17 4 3 1 | coe1fvalcl | ⊢ ( ( 𝑀 ∈ 𝐵 ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ∈ 𝐾 ) |
| 19 | 15 16 18 | sylancl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ∈ 𝐾 ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ∈ 𝐾 ) |
| 21 | fveq2 | ⊢ ( 𝑠 = ( ( coe1 ‘ 𝑀 ) ‘ 0 ) → ( 𝐴 ‘ 𝑠 ) = ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) | |
| 22 | 21 | eqeq2d | ⊢ ( 𝑠 = ( ( coe1 ‘ 𝑀 ) ‘ 0 ) → ( 𝑀 = ( 𝐴 ‘ 𝑠 ) ↔ 𝑀 = ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ) |
| 23 | 22 | adantl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) ∧ 𝑠 = ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) → ( 𝑀 = ( 𝐴 ‘ 𝑠 ) ↔ 𝑀 = ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ) |
| 24 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) | |
| 25 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 26 | 3 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 27 | 3 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 28 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) | |
| 29 | 5 25 26 27 28 4 | asclf | ⊢ ( 𝑅 ∈ Ring → 𝐴 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ 𝐵 ) |
| 30 | 29 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝐴 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ 𝐵 ) |
| 31 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 32 | 17 4 3 31 | coe1fvalcl | ⊢ ( ( 𝑀 ∈ 𝐵 ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 33 | 15 16 32 | sylancl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 34 | 3 | ply1sca | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 35 | 34 | eqcomd | ⊢ ( 𝑅 ∈ Ring → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
| 36 | 35 | fveq2d | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
| 38 | 33 37 | eleqtrrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 39 | 30 38 | ffvelcdmd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ∈ 𝐵 ) |
| 40 | 24 15 39 | 3jca | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ∈ 𝐵 ) ) |
| 41 | 40 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ∈ 𝐵 ) ) |
| 42 | simpr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) | |
| 43 | 3 5 1 2 | coe1scl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ∈ 𝐾 ) → ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( coe1 ‘ 𝑀 ) ‘ 0 ) , 0 ) ) ) |
| 44 | 19 43 | syldan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( coe1 ‘ 𝑀 ) ‘ 0 ) , 0 ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( coe1 ‘ 𝑀 ) ‘ 0 ) , 0 ) ) ) |
| 46 | nnne0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) | |
| 47 | 46 | neneqd | ⊢ ( 𝑛 ∈ ℕ → ¬ 𝑛 = 0 ) |
| 48 | 47 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ¬ 𝑛 = 0 ) |
| 49 | 48 | adantr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ¬ 𝑛 = 0 ) |
| 50 | eqeq1 | ⊢ ( 𝑘 = 𝑛 → ( 𝑘 = 0 ↔ 𝑛 = 0 ) ) | |
| 51 | 50 | notbid | ⊢ ( 𝑘 = 𝑛 → ( ¬ 𝑘 = 0 ↔ ¬ 𝑛 = 0 ) ) |
| 52 | 51 | adantl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( ¬ 𝑘 = 0 ↔ ¬ 𝑛 = 0 ) ) |
| 53 | 49 52 | mpbird | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ¬ 𝑘 = 0 ) |
| 54 | 53 | iffalsed | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → if ( 𝑘 = 0 , ( ( coe1 ‘ 𝑀 ) ‘ 0 ) , 0 ) = 0 ) |
| 55 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 56 | 55 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
| 57 | 2 | fvexi | ⊢ 0 ∈ V |
| 58 | 57 | a1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 0 ∈ V ) |
| 59 | 45 54 56 58 | fvmptd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) = 0 ) |
| 60 | 59 | eqcomd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 0 = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ) |
| 61 | 60 | adantr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → 0 = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ) |
| 62 | 42 61 | eqtrd | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ) |
| 63 | 62 | ex | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 → ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ) ) |
| 64 | 63 | ralimdva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ) ) |
| 65 | 64 | imp | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ) |
| 66 | 3 5 1 | ply1sclid | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ∈ 𝐾 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 0 ) ) |
| 67 | 19 66 | syldan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 0 ) ) |
| 68 | 67 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 0 ) ) |
| 69 | df-n0 | ⊢ ℕ0 = ( ℕ ∪ { 0 } ) | |
| 70 | 69 | raleqi | ⊢ ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( ℕ ∪ { 0 } ) ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ) |
| 71 | c0ex | ⊢ 0 ∈ V | |
| 72 | fveq2 | ⊢ ( 𝑛 = 0 → ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) | |
| 73 | fveq2 | ⊢ ( 𝑛 = 0 → ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 0 ) ) | |
| 74 | 72 73 | eqeq12d | ⊢ ( 𝑛 = 0 → ( ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ↔ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 0 ) ) ) |
| 75 | 74 | ralunsn | ⊢ ( 0 ∈ V → ( ∀ 𝑛 ∈ ( ℕ ∪ { 0 } ) ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ↔ ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 0 ) ) ) ) |
| 76 | 71 75 | mp1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ( ∀ 𝑛 ∈ ( ℕ ∪ { 0 } ) ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ↔ ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 0 ) ) ) ) |
| 77 | 70 76 | bitrid | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ↔ ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 0 ) ) ) ) |
| 78 | 65 68 77 | mpbir2and | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ) |
| 79 | eqid | ⊢ ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) = ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) | |
| 80 | 3 4 17 79 | eqcoe1ply1eq | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ∈ 𝐵 ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) → 𝑀 = ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ) |
| 81 | 41 78 80 | sylc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → 𝑀 = ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) |
| 82 | 20 23 81 | rspcedvd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ∃ 𝑠 ∈ 𝐾 𝑀 = ( 𝐴 ‘ 𝑠 ) ) |
| 83 | 82 | ex | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 → ∃ 𝑠 ∈ 𝐾 𝑀 = ( 𝐴 ‘ 𝑠 ) ) ) |
| 84 | 14 83 | impbid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ 𝐾 𝑀 = ( 𝐴 ‘ 𝑠 ) ↔ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) ) |