This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A polynomial is constant (i.e. a "lifted scalar") iff all but the first coefficient are zero. (Contributed by AV, 16-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cply1coe0.k | |- K = ( Base ` R ) |
|
| cply1coe0.0 | |- .0. = ( 0g ` R ) |
||
| cply1coe0.p | |- P = ( Poly1 ` R ) |
||
| cply1coe0.b | |- B = ( Base ` P ) |
||
| cply1coe0.a | |- A = ( algSc ` P ) |
||
| Assertion | cply1coe0bi | |- ( ( R e. Ring /\ M e. B ) -> ( E. s e. K M = ( A ` s ) <-> A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cply1coe0.k | |- K = ( Base ` R ) |
|
| 2 | cply1coe0.0 | |- .0. = ( 0g ` R ) |
|
| 3 | cply1coe0.p | |- P = ( Poly1 ` R ) |
|
| 4 | cply1coe0.b | |- B = ( Base ` P ) |
|
| 5 | cply1coe0.a | |- A = ( algSc ` P ) |
|
| 6 | 1 2 3 4 5 | cply1coe0 | |- ( ( R e. Ring /\ s e. K ) -> A. n e. NN ( ( coe1 ` ( A ` s ) ) ` n ) = .0. ) |
| 7 | 6 | ad4ant13 | |- ( ( ( ( R e. Ring /\ M e. B ) /\ s e. K ) /\ M = ( A ` s ) ) -> A. n e. NN ( ( coe1 ` ( A ` s ) ) ` n ) = .0. ) |
| 8 | fveq2 | |- ( M = ( A ` s ) -> ( coe1 ` M ) = ( coe1 ` ( A ` s ) ) ) |
|
| 9 | 8 | fveq1d | |- ( M = ( A ` s ) -> ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` s ) ) ` n ) ) |
| 10 | 9 | eqeq1d | |- ( M = ( A ` s ) -> ( ( ( coe1 ` M ) ` n ) = .0. <-> ( ( coe1 ` ( A ` s ) ) ` n ) = .0. ) ) |
| 11 | 10 | ralbidv | |- ( M = ( A ` s ) -> ( A. n e. NN ( ( coe1 ` M ) ` n ) = .0. <-> A. n e. NN ( ( coe1 ` ( A ` s ) ) ` n ) = .0. ) ) |
| 12 | 11 | adantl | |- ( ( ( ( R e. Ring /\ M e. B ) /\ s e. K ) /\ M = ( A ` s ) ) -> ( A. n e. NN ( ( coe1 ` M ) ` n ) = .0. <-> A. n e. NN ( ( coe1 ` ( A ` s ) ) ` n ) = .0. ) ) |
| 13 | 7 12 | mpbird | |- ( ( ( ( R e. Ring /\ M e. B ) /\ s e. K ) /\ M = ( A ` s ) ) -> A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) |
| 14 | 13 | rexlimdva2 | |- ( ( R e. Ring /\ M e. B ) -> ( E. s e. K M = ( A ` s ) -> A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) ) |
| 15 | simpr | |- ( ( R e. Ring /\ M e. B ) -> M e. B ) |
|
| 16 | 0nn0 | |- 0 e. NN0 |
|
| 17 | eqid | |- ( coe1 ` M ) = ( coe1 ` M ) |
|
| 18 | 17 4 3 1 | coe1fvalcl | |- ( ( M e. B /\ 0 e. NN0 ) -> ( ( coe1 ` M ) ` 0 ) e. K ) |
| 19 | 15 16 18 | sylancl | |- ( ( R e. Ring /\ M e. B ) -> ( ( coe1 ` M ) ` 0 ) e. K ) |
| 20 | 19 | adantr | |- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> ( ( coe1 ` M ) ` 0 ) e. K ) |
| 21 | fveq2 | |- ( s = ( ( coe1 ` M ) ` 0 ) -> ( A ` s ) = ( A ` ( ( coe1 ` M ) ` 0 ) ) ) |
|
| 22 | 21 | eqeq2d | |- ( s = ( ( coe1 ` M ) ` 0 ) -> ( M = ( A ` s ) <-> M = ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ) |
| 23 | 22 | adantl | |- ( ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) /\ s = ( ( coe1 ` M ) ` 0 ) ) -> ( M = ( A ` s ) <-> M = ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ) |
| 24 | simpl | |- ( ( R e. Ring /\ M e. B ) -> R e. Ring ) |
|
| 25 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 26 | 3 | ply1ring | |- ( R e. Ring -> P e. Ring ) |
| 27 | 3 | ply1lmod | |- ( R e. Ring -> P e. LMod ) |
| 28 | eqid | |- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
|
| 29 | 5 25 26 27 28 4 | asclf | |- ( R e. Ring -> A : ( Base ` ( Scalar ` P ) ) --> B ) |
| 30 | 29 | adantr | |- ( ( R e. Ring /\ M e. B ) -> A : ( Base ` ( Scalar ` P ) ) --> B ) |
| 31 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 32 | 17 4 3 31 | coe1fvalcl | |- ( ( M e. B /\ 0 e. NN0 ) -> ( ( coe1 ` M ) ` 0 ) e. ( Base ` R ) ) |
| 33 | 15 16 32 | sylancl | |- ( ( R e. Ring /\ M e. B ) -> ( ( coe1 ` M ) ` 0 ) e. ( Base ` R ) ) |
| 34 | 3 | ply1sca | |- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 35 | 34 | eqcomd | |- ( R e. Ring -> ( Scalar ` P ) = R ) |
| 36 | 35 | fveq2d | |- ( R e. Ring -> ( Base ` ( Scalar ` P ) ) = ( Base ` R ) ) |
| 37 | 36 | adantr | |- ( ( R e. Ring /\ M e. B ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` R ) ) |
| 38 | 33 37 | eleqtrrd | |- ( ( R e. Ring /\ M e. B ) -> ( ( coe1 ` M ) ` 0 ) e. ( Base ` ( Scalar ` P ) ) ) |
| 39 | 30 38 | ffvelcdmd | |- ( ( R e. Ring /\ M e. B ) -> ( A ` ( ( coe1 ` M ) ` 0 ) ) e. B ) |
| 40 | 24 15 39 | 3jca | |- ( ( R e. Ring /\ M e. B ) -> ( R e. Ring /\ M e. B /\ ( A ` ( ( coe1 ` M ) ` 0 ) ) e. B ) ) |
| 41 | 40 | adantr | |- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> ( R e. Ring /\ M e. B /\ ( A ` ( ( coe1 ` M ) ` 0 ) ) e. B ) ) |
| 42 | simpr | |- ( ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) /\ ( ( coe1 ` M ) ` n ) = .0. ) -> ( ( coe1 ` M ) ` n ) = .0. ) |
|
| 43 | 3 5 1 2 | coe1scl | |- ( ( R e. Ring /\ ( ( coe1 ` M ) ` 0 ) e. K ) -> ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) = ( k e. NN0 |-> if ( k = 0 , ( ( coe1 ` M ) ` 0 ) , .0. ) ) ) |
| 44 | 19 43 | syldan | |- ( ( R e. Ring /\ M e. B ) -> ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) = ( k e. NN0 |-> if ( k = 0 , ( ( coe1 ` M ) ` 0 ) , .0. ) ) ) |
| 45 | 44 | adantr | |- ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) -> ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) = ( k e. NN0 |-> if ( k = 0 , ( ( coe1 ` M ) ` 0 ) , .0. ) ) ) |
| 46 | nnne0 | |- ( n e. NN -> n =/= 0 ) |
|
| 47 | 46 | neneqd | |- ( n e. NN -> -. n = 0 ) |
| 48 | 47 | adantl | |- ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) -> -. n = 0 ) |
| 49 | 48 | adantr | |- ( ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) /\ k = n ) -> -. n = 0 ) |
| 50 | eqeq1 | |- ( k = n -> ( k = 0 <-> n = 0 ) ) |
|
| 51 | 50 | notbid | |- ( k = n -> ( -. k = 0 <-> -. n = 0 ) ) |
| 52 | 51 | adantl | |- ( ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) /\ k = n ) -> ( -. k = 0 <-> -. n = 0 ) ) |
| 53 | 49 52 | mpbird | |- ( ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) /\ k = n ) -> -. k = 0 ) |
| 54 | 53 | iffalsed | |- ( ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) /\ k = n ) -> if ( k = 0 , ( ( coe1 ` M ) ` 0 ) , .0. ) = .0. ) |
| 55 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 56 | 55 | adantl | |- ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) -> n e. NN0 ) |
| 57 | 2 | fvexi | |- .0. e. _V |
| 58 | 57 | a1i | |- ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) -> .0. e. _V ) |
| 59 | 45 54 56 58 | fvmptd | |- ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) -> ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) = .0. ) |
| 60 | 59 | eqcomd | |- ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) -> .0. = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) ) |
| 61 | 60 | adantr | |- ( ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) /\ ( ( coe1 ` M ) ` n ) = .0. ) -> .0. = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) ) |
| 62 | 42 61 | eqtrd | |- ( ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) /\ ( ( coe1 ` M ) ` n ) = .0. ) -> ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) ) |
| 63 | 62 | ex | |- ( ( ( R e. Ring /\ M e. B ) /\ n e. NN ) -> ( ( ( coe1 ` M ) ` n ) = .0. -> ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) ) ) |
| 64 | 63 | ralimdva | |- ( ( R e. Ring /\ M e. B ) -> ( A. n e. NN ( ( coe1 ` M ) ` n ) = .0. -> A. n e. NN ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) ) ) |
| 65 | 64 | imp | |- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> A. n e. NN ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) ) |
| 66 | 3 5 1 | ply1sclid | |- ( ( R e. Ring /\ ( ( coe1 ` M ) ` 0 ) e. K ) -> ( ( coe1 ` M ) ` 0 ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` 0 ) ) |
| 67 | 19 66 | syldan | |- ( ( R e. Ring /\ M e. B ) -> ( ( coe1 ` M ) ` 0 ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` 0 ) ) |
| 68 | 67 | adantr | |- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> ( ( coe1 ` M ) ` 0 ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` 0 ) ) |
| 69 | df-n0 | |- NN0 = ( NN u. { 0 } ) |
|
| 70 | 69 | raleqi | |- ( A. n e. NN0 ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) <-> A. n e. ( NN u. { 0 } ) ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) ) |
| 71 | c0ex | |- 0 e. _V |
|
| 72 | fveq2 | |- ( n = 0 -> ( ( coe1 ` M ) ` n ) = ( ( coe1 ` M ) ` 0 ) ) |
|
| 73 | fveq2 | |- ( n = 0 -> ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` 0 ) ) |
|
| 74 | 72 73 | eqeq12d | |- ( n = 0 -> ( ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) <-> ( ( coe1 ` M ) ` 0 ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` 0 ) ) ) |
| 75 | 74 | ralunsn | |- ( 0 e. _V -> ( A. n e. ( NN u. { 0 } ) ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) <-> ( A. n e. NN ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) /\ ( ( coe1 ` M ) ` 0 ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` 0 ) ) ) ) |
| 76 | 71 75 | mp1i | |- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> ( A. n e. ( NN u. { 0 } ) ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) <-> ( A. n e. NN ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) /\ ( ( coe1 ` M ) ` 0 ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` 0 ) ) ) ) |
| 77 | 70 76 | bitrid | |- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> ( A. n e. NN0 ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) <-> ( A. n e. NN ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) /\ ( ( coe1 ` M ) ` 0 ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` 0 ) ) ) ) |
| 78 | 65 68 77 | mpbir2and | |- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> A. n e. NN0 ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) ) |
| 79 | eqid | |- ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) = ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) |
|
| 80 | 3 4 17 79 | eqcoe1ply1eq | |- ( ( R e. Ring /\ M e. B /\ ( A ` ( ( coe1 ` M ) ` 0 ) ) e. B ) -> ( A. n e. NN0 ( ( coe1 ` M ) ` n ) = ( ( coe1 ` ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ` n ) -> M = ( A ` ( ( coe1 ` M ) ` 0 ) ) ) ) |
| 81 | 41 78 80 | sylc | |- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> M = ( A ` ( ( coe1 ` M ) ` 0 ) ) ) |
| 82 | 20 23 81 | rspcedvd | |- ( ( ( R e. Ring /\ M e. B ) /\ A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) -> E. s e. K M = ( A ` s ) ) |
| 83 | 82 | ex | |- ( ( R e. Ring /\ M e. B ) -> ( A. n e. NN ( ( coe1 ` M ) ` n ) = .0. -> E. s e. K M = ( A ` s ) ) ) |
| 84 | 14 83 | impbid | |- ( ( R e. Ring /\ M e. B ) -> ( E. s e. K M = ( A ` s ) <-> A. n e. NN ( ( coe1 ` M ) ` n ) = .0. ) ) |