This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for coe1fzgsumd (induction step). (Contributed by AV, 8-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1fzgsumd.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| coe1fzgsumd.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| coe1fzgsumd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| coe1fzgsumd.k | ⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) | ||
| Assertion | coe1fzgsumdlem | ⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → ( ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fzgsumd.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | coe1fzgsumd.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | coe1fzgsumd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | coe1fzgsumd.k | ⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) | |
| 5 | ralunb | ⊢ ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 ↔ ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ) | |
| 6 | nfcv | ⊢ Ⅎ 𝑦 𝑀 | |
| 7 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝑀 | |
| 8 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝑀 = ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) | |
| 9 | 6 7 8 | cbvmpt | ⊢ ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) = ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
| 10 | 9 | oveq2i | ⊢ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) = ( 𝑃 Σg ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) |
| 11 | eqid | ⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) | |
| 12 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 13 | 3 12 | syl | ⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 14 | ringcmn | ⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → 𝑃 ∈ CMnd ) |
| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → 𝑃 ∈ CMnd ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝑃 ∈ CMnd ) |
| 18 | simpll1 | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝑚 ∈ Fin ) | |
| 19 | rspcsbela | ⊢ ( ( 𝑦 ∈ 𝑚 ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) | |
| 20 | 19 | expcom | ⊢ ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( 𝑦 ∈ 𝑚 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) ) |
| 21 | 20 | adantl | ⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → ( 𝑦 ∈ 𝑚 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) ) |
| 22 | 21 | adantr | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑦 ∈ 𝑚 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) ) |
| 23 | 22 | imp | ⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑚 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) |
| 24 | vex | ⊢ 𝑎 ∈ V | |
| 25 | 24 | a1i | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝑎 ∈ V ) |
| 26 | simpll2 | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ¬ 𝑎 ∈ 𝑚 ) | |
| 27 | vsnid | ⊢ 𝑎 ∈ { 𝑎 } | |
| 28 | rspcsbela | ⊢ ( ( 𝑎 ∈ { 𝑎 } ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) | |
| 29 | 27 28 | mpan | ⊢ ( ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 → ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) |
| 30 | 29 | adantl | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) |
| 31 | csbeq1 | ⊢ ( 𝑦 = 𝑎 → ⦋ 𝑦 / 𝑥 ⦌ 𝑀 = ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) | |
| 32 | 2 11 17 18 23 25 26 30 31 | gsumunsn | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑃 Σg ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) = ( ( 𝑃 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) |
| 33 | 10 32 | eqtrid | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) = ( ( 𝑃 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) |
| 34 | 6 7 8 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) = ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
| 35 | 34 | eqcomi | ⊢ ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) = ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) |
| 36 | 35 | oveq2i | ⊢ ( 𝑃 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) = ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) |
| 37 | 36 | oveq1i | ⊢ ( ( 𝑃 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) = ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) |
| 38 | 33 37 | eqtrdi | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) = ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) |
| 39 | 38 | fveq2d | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) = ( coe1 ‘ ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) ) |
| 40 | 39 | fveq1d | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) ‘ 𝐾 ) ) |
| 41 | 3 | 3ad2ant3 | ⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → 𝑅 ∈ Ring ) |
| 42 | 41 | ad2antrr | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 43 | simplr | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) | |
| 44 | 2 17 18 43 | gsummptcl | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ∈ 𝐵 ) |
| 45 | 4 | 3ad2ant3 | ⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → 𝐾 ∈ ℕ0 ) |
| 46 | 45 | ad2antrr | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝐾 ∈ ℕ0 ) |
| 47 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 48 | 1 2 11 47 | coe1addfv | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ∈ 𝐵 ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) ‘ 𝐾 ) = ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
| 49 | 42 44 30 46 48 | syl31anc | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ( +g ‘ 𝑃 ) ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) ‘ 𝐾 ) = ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
| 50 | 40 49 | eqtrd | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
| 51 | oveq1 | ⊢ ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) = ( ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) | |
| 52 | 50 51 | sylan9eq | ⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
| 53 | nfcv | ⊢ Ⅎ 𝑦 ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) | |
| 54 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) | |
| 55 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) = ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) | |
| 56 | 53 54 55 | cbvmpt | ⊢ ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) |
| 57 | 56 | oveq2i | ⊢ ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) |
| 58 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 59 | ringcmn | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) | |
| 60 | 3 59 | syl | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 61 | 60 | 3ad2ant3 | ⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → 𝑅 ∈ CMnd ) |
| 62 | 61 | ad2antrr | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → 𝑅 ∈ CMnd ) |
| 63 | csbfv12 | ⊢ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) = ( ⦋ 𝑦 / 𝑥 ⦌ ( coe1 ‘ 𝑀 ) ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐾 ) | |
| 64 | csbfv2g | ⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ ( coe1 ‘ 𝑀 ) = ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ) | |
| 65 | 64 | elv | ⊢ ⦋ 𝑦 / 𝑥 ⦌ ( coe1 ‘ 𝑀 ) = ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) |
| 66 | csbconstg | ⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ 𝐾 = 𝐾 ) | |
| 67 | 66 | elv | ⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝐾 = 𝐾 |
| 68 | 65 67 | fveq12i | ⊢ ( ⦋ 𝑦 / 𝑥 ⦌ ( coe1 ‘ 𝑀 ) ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝐾 ) = ( ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) |
| 69 | 63 68 | eqtri | ⊢ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) = ( ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) |
| 70 | eqid | ⊢ ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) = ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) | |
| 71 | 70 2 1 58 | coe1f | ⊢ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ∈ 𝐵 → ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 72 | 23 71 | syl | ⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑚 ) → ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 73 | 45 | adantr | ⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → 𝐾 ∈ ℕ0 ) |
| 74 | 73 | ad2antrr | ⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑚 ) → 𝐾 ∈ ℕ0 ) |
| 75 | 72 74 | ffvelcdmd | ⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑚 ) → ( ( coe1 ‘ ⦋ 𝑦 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ∈ ( Base ‘ 𝑅 ) ) |
| 76 | 69 75 | eqeltrid | ⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝑚 ) → ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ∈ ( Base ‘ 𝑅 ) ) |
| 77 | eqid | ⊢ ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) = ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) | |
| 78 | 77 2 1 58 | coe1f | ⊢ ( ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ∈ 𝐵 → ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 79 | 30 78 | syl | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 80 | 79 46 | ffvelcdmd | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ∈ ( Base ‘ 𝑅 ) ) |
| 81 | nfcv | ⊢ Ⅎ 𝑥 𝑎 | |
| 82 | nfcv | ⊢ Ⅎ 𝑥 coe1 | |
| 83 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝑀 | |
| 84 | 82 83 | nffv | ⊢ Ⅎ 𝑥 ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) |
| 85 | nfcv | ⊢ Ⅎ 𝑥 𝐾 | |
| 86 | 84 85 | nffv | ⊢ Ⅎ 𝑥 ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) |
| 87 | csbeq1a | ⊢ ( 𝑥 = 𝑎 → 𝑀 = ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) | |
| 88 | 87 | fveq2d | ⊢ ( 𝑥 = 𝑎 → ( coe1 ‘ 𝑀 ) = ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ) |
| 89 | 88 | fveq1d | ⊢ ( 𝑥 = 𝑎 → ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) = ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) |
| 90 | 81 86 89 | csbhypf | ⊢ ( 𝑦 = 𝑎 → ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) = ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) |
| 91 | 58 47 62 18 76 25 26 80 90 | gsumunsn | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑅 Σg ( 𝑦 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( ( 𝑅 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
| 92 | 57 91 | eqtrid | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( ( 𝑅 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) ) |
| 93 | 53 54 55 | cbvmpt | ⊢ ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) |
| 94 | 93 | eqcomi | ⊢ ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) |
| 95 | 94 | oveq2i | ⊢ ( 𝑅 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) |
| 96 | 95 | oveq1i | ⊢ ( ( 𝑅 Σg ( 𝑦 ∈ 𝑚 ↦ ⦋ 𝑦 / 𝑥 ⦌ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) = ( ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) |
| 97 | 92 96 | eqtr2di | ⊢ ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |
| 98 | 97 | adantr | ⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ⦋ 𝑎 / 𝑥 ⦌ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |
| 99 | 52 98 | eqtrd | ⊢ ( ( ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) ∧ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |
| 100 | 99 | exp31 | ⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |
| 101 | 100 | com23 | ⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) → ( ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |
| 102 | 101 | ex | ⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) → ( ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) ) |
| 103 | 102 | a2d | ⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → ( ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) ) |
| 104 | 103 | imp4b | ⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) → ( ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ∧ ∀ 𝑥 ∈ { 𝑎 } 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) |
| 105 | 5 104 | biimtrid | ⊢ ( ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) ∧ ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) → ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) |
| 106 | 105 | ex | ⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → ( ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |