This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All but the first coefficient of a constant polynomial ( i.e. a "lifted scalar") are zero. (Contributed by AV, 16-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cply1coe0.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| cply1coe0.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| cply1coe0.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| cply1coe0.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| cply1coe0.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| Assertion | cply1coe0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝐴 ‘ 𝑆 ) ) ‘ 𝑛 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cply1coe0.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 2 | cply1coe0.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | cply1coe0.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 4 | cply1coe0.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 5 | cply1coe0.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 6 | 3 5 1 2 | coe1scl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) → ( coe1 ‘ ( 𝐴 ‘ 𝑆 ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , 𝑆 , 0 ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) → ( coe1 ‘ ( 𝐴 ‘ 𝑆 ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , 𝑆 , 0 ) ) ) |
| 8 | nnne0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) | |
| 9 | 8 | neneqd | ⊢ ( 𝑛 ∈ ℕ → ¬ 𝑛 = 0 ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) → ¬ 𝑛 = 0 ) |
| 11 | 10 | adantr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ¬ 𝑛 = 0 ) |
| 12 | eqeq1 | ⊢ ( 𝑘 = 𝑛 → ( 𝑘 = 0 ↔ 𝑛 = 0 ) ) | |
| 13 | 12 | notbid | ⊢ ( 𝑘 = 𝑛 → ( ¬ 𝑘 = 0 ↔ ¬ 𝑛 = 0 ) ) |
| 14 | 13 | adantl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( ¬ 𝑘 = 0 ↔ ¬ 𝑛 = 0 ) ) |
| 15 | 11 14 | mpbird | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ¬ 𝑘 = 0 ) |
| 16 | 15 | iffalsed | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → if ( 𝑘 = 0 , 𝑆 , 0 ) = 0 ) |
| 17 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 18 | 17 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
| 19 | 2 | fvexi | ⊢ 0 ∈ V |
| 20 | 19 | a1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) → 0 ∈ V ) |
| 21 | 7 16 18 20 | fvmptd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) → ( ( coe1 ‘ ( 𝐴 ‘ 𝑆 ) ) ‘ 𝑛 ) = 0 ) |
| 22 | 21 | ralrimiva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝐴 ‘ 𝑆 ) ) ‘ 𝑛 ) = 0 ) |